
ADMM for High-Dimensional Sparse Penalized

Quantile Regression

YUWEN GU*, JUN FAN†, LINGCHEN KONG†, SHIQIAN MA‡AND HUI ZOU§

Abstract

Sparse penalized quantile regression is a useful tool for variable selection, robust estimation

and heteroscedasticity detection in high-dimensional data analysis. The computational issue

of the sparse penalized quantile regression has not yet been fully resolved in the literature,

due to non-smoothness of the quantile regression loss function. We introduce fast alternating

direction method of multipliers (ADMM) algorithms for computing the sparse penalized

quantile regression. The convergence properties of the proposed algorithms are established.

Numerical examples demonstrate the competitive performance of our algorithm: it significantly

outperforms several other fast solvers for high-dimensional penalized quantile regression.
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1 Introduction

High-dimensional data are frequently collected in a wide variety of research areas such as genomics,

functional magnetic resonance imaging, tomography, economics, and finance. Analysis of high-

dimensional data poses many challenges and has attracted tremendous recent interests in a number

of fields such as econometrics, applied mathematics, electronic engineering, and statistics. Sparse

penalized least squares regression has become a widely used method for analyzing high-dimensional

data. The least squares regression can be regularized with various penalties, such as the bridge

penalty (Frank and Friedman, 1993), lasso (Tibshirani, 1996), SCAD (Fan and Li, 2001), elastic

net (Zou and Hastie, 2005), adaptive lasso (Zou, 2006), and so on. Many researchers have also

considered regression methods other than the least squares for high-dimensional data analysis. For

example, quantile regression introduced by Koenker and Bassett (1978) has gained a lot of attention

in the high-dimensional statistics literature, owing to its robustness property and its ability to offer

unique insights into the relation between the response variable and the covariates that is not available

in doing least squares regression which only estimates the conditional mean function. The classical

least absolute deviation (LAD) regression can be viewed as a special case of the quantile regression.

A comprehensive treatment of the quantile regression can be found in Koenker (2005). Recently,

many studies on quantile regression have been focusing on high-dimensional scenarios where the

number of parameters exceeds the number of observations; see, for example, Wu and Liu (2009),

Belloni and Chernozhukov (2011), Wang et al. (2012), Wang (2013), Fan et al. (2014a), and Fan

et al. (2014b). Belloni and Chernozhukov (2011) studied the L1-penalized quantile regression in

high-dimensional sparse models where the dimensionality could be larger than the sample size.

They showed that the lasso penalized quantile regression estimator is consistent at near-oracle

rate, and gave conditions under which the selected model includes the true model. Wang (2013)

studied the L1-penalized LAD regression and showed that its estimator achieves near-oracle risk

performance with a universal penalty parameter. Fan et al. (2014a) studied the penalized quantile

regression with the weighted L1-penalty. Fan et al. (2014b) provided a general framework for

solving folded concave penalized regression, including the quantile regression as a special case, via
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a two-step local linear approximation (LLA) approach. They showed that with high probability, the

oracle estimator can be directly obtained within two iterations of the LLA algorithm. This property

is often referred to as the strong oracle property (Fan and Lv, 2011).

Compared to the least squares method, fitting quantile regression requires more sophisticated

computational algorithm. Numerical computation is particularly important in high-dimensional

scenarios. Several algorithms have been developed in the literature to deal with regularized quantile

regression. A standard method for solving the quantile lasso is to transform the corresponding

optimization problem into a linear program, which can then be solved by many existing optimization

software packages. Koenker and Ng (2005) proposed an interior-point method for quantile regression

and penalized quantile regression. Li and Zhu (2008) proposed an algorithm for computing the

solution path of the lasso penalized quantile regression following the LARS/lasso (Efron et al.,

2004) algorithm. Wu and Lange (2008) proposed a greedy coordinate descent algorithm for lasso

penalized LAD regression. A similar coordinate descent algorithm for the penalized quantile

regression was studied in Peng and Wang (2015). Yi and Huang (2016) proposed a coordinate

descent algorithm for solving the elastic-net penalized Huber regression and used that to approximate

the penalized quantile regression. Hunter and Lange (2000) presented a majorization-minimization

(MM) algorithm which successively finds quadratic majorizing functions for a perturbed version of

the quantile regression loss function. For the kernel quantile regression under smoothness-sparsity

constraint, Lv et al. (2016) developed their algorithm by combining the MM technique in Hunter

and Lange (2000) and the proximal gradient method (Parikh and Boyd, 2013). Yang et al. (2013)

considered a randomized algorithm for solving large scale quantile regression with small to moderate

dimensions.

The alternating direction method of multipliers (ADMM) algorithm has found many successful

applications in high-dimensional statistics and machine learning, such as comprehensive sens-

ing (Yin et al., 2008; Goldstein and Osher, 2009), optimal control (O’Donoghue et al., 2013), and

statistics (Xue et al., 2012; Bien et al., 2013; Bogdan et al., 2013; Zhang et al., 2014), to name a

few. Boyd et al. (2011) argued that ADMM is well suited for distributed convex optimization and
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for large-scale problems arising in statistics, machine learning, and related areas. As an important

variant of ADMM, the proximal ADMM has also attracted many research efforts in the fields of

optimization; see, for example, Eckstein (1994), He et al. (2002), and Fazel et al. (2013).

In this article, we propose a proximal ADMM (pADMM) algorithm and a sparse coordinate

descent ADMM (scdADMM) algorithm to solve the penalized quantile regression with the lasso,

adaptive lasso and folded concave penalties. Global convergence results are established for the

proposed methods. In numerical experiments, we demonstrate that our algorithms can efficiently

solve the sparse penalized quantile regression and the solutions produced by the algorithms are of

high statistical accuracy. The article is organized as follows. In Section 2, we introduce the sparse

penalized quantile regression and set up a uniform framework to include various regularization

types, such as the lasso, adaptive lasso and folded concave penalties. We present the ADMM

algorithms for solving the sparse penalized quantile regression in Section 3. The numerical and

statistical efficiency of the proposed algorithms is demonstrated by simulation studies and real data

analysis in Section 4. Technical proofs can be found in the online supplementary file.

2 Sparse Penalized Quantile Regression

Quantile regression is a popular method for studying the influence of a set of covariates on the

conditional distribution of a response variable. Besides the well-known property of being robust

to outliers, quantile regression has also been widely applied to handle heteroscedasticity (Koenker

and Bassett, 1982; Wang et al., 2012). Given univariate response Y ∈ R and a vector of covariates

X ∈ Rp, let FY (y|x) = Pr(Y ≤ y|X = x) be the conditional cumulative distribution function and

QY (τ|x) = inf{y : FY (y|x)≥ τ} be the τth conditional quantile for τ ∈ (0,1). The linear quantile

regression model assumes QY (τ|x) = xTβ (τ) for some unknown coefficient vector β (τ). Given

observations (xi,yi)
n
i=1, the quantile regression estimator of β (τ) is obtained through minimization

of the empirical loss function ∑
n
i=1 ρτ(yi−xT

i β ) over β ∈ Rp, where ρτ(u) = u{τ− I(u < 0)} is

the check loss. Asymptotic properties for the regression quantiles under fixed dimension have been
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well studied (Koenker and Bassett, 1978; Chen et al., 1990; Pollard, 1991). When the dimension is

allowed to increase, but with p = o(n), the asymptotic behaviors of the regression quantiles can be

investigated directly using results from Welsh (1989), Bai and Wu (1994) and He and Shao (2000).

With even higher dimensions, especially when p > n, the sparse penalized quantile regression has

been proposed to encourage sparsity in the coefficient estimates, where we consider minimizing

1
n

n

∑
i=1

ρτ(yi−xT
i β )+

n

∑
j=1

pλ (|β j|)

over β ∈ Rp. Here, pλ (·), λ > 0 is the penalty function introduced to control the model complexity.

A popular choice of pλ (·) is the lasso penalty. Under some sparsity assumption of β (τ), the

lasso penalized regression estimator is shown to be consistent at near-oracle rate O(
√

s log p/n)

by Belloni and Chernozhukov (2011), where s = ‖β (τ)‖0 = ∑
p
j=1 I(β j(τ) 6= 0). To alleviate the

bias phenomenon of the lasso, adaptive lasso and folded concave penalties have been used in, for

example, Wang et al. (2012), Fan et al. (2014a) and Fan et al. (2014b).

Sparse penalized quantile regression is computationally challenging due to the nonsmooth nature

of the check loss. An added layer of complexity comes from the non-smoothness of the penalty

functions, let alone the issues arising from nonconvex optimization when folded concave penalties

are used. In this article, we propose fast alternating direction method of multipliers algorithms for

computing penalized quantile regression with various penalties. To facilitate the discussion, let us

consider the following weighted L1-penalized quantile regression

min
β

1
n

n

∑
i=1

ρτ(yi−xT
i β )+λ‖w◦β‖1, (1)

where λ > 0 is the regularization parameter, w = (w1, . . . ,wp)
T is the vector of nonnegative weights,

w j ≥ 0, j = 1, . . . , p, and ‖w ◦ β‖1 = ∑
p
j=1 |w jβ j| = ∑

p
j=1 w j|β j| with ◦ denoting the Hadamard

product. We note that in formulation (1), if xi1 = 1 and β1 represents the intercept term, one can set

w1 = 0 to respect the practice of leaving the intercept term unpenalized.

To see why formulation (1) is general, note that for the lasso penalized quantile regression,
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one can choose w = 1p, a p-vector of all ones. While for the adaptive lasso penalized quantile

regression, the typical choice, w j = (|β̂ lasso
j |+ 1/n)−1, j = 1 . . . , p, is often employed, where

β̂
lasso

= (β̂ lasso
j , j = 1, . . . , p)T denotes the quantile lasso estimator.

Once the problem in (1) is efficiently solved, the nonconvex penalized quantile regression can

then be solved by combining the local linear approximation (LLA, Zou and Li, 2008) algorithm

and the efficient algorithm for solving (1). Specifically, let pλ be a folded concave penalty (Fan

and Lv, 2011; Fan et al., 2014b). The LLA algorithm solves the folded concave penalized quantile

regression,

min
β

1
n

n

∑
i=1

ρτ(yi−xT
i β )+

p

∑
j=1

pλ (|β j|),

via the following iterations:

(a) Initialize β with β̂
0
.

(b) For k = 1,2, . . . ,M,

(b.1) Compute the weights w j = ŵk−1
j = λ−1 p′

λ
(|β̂ k−1

j |), j = 1, . . . , p.

(b.2) Solve problem (1) using the weights from step (b.1) to obtain the update β̂
k
.

It can be seen that the folded concave penalized quantile regression is solved by a sequence of

weighted L1-penalized quantile regression. In fact, Fan et al. (2014b) showed that theoretically two

or three iterations are good enough to yield a solution with high statistical accuracy. As an example,

the SCAD penalty has derivative

p′
λ
(u) = λ I(|u| ≤ λ )+

max(aλ −|u|,0)
a−1

I(|u|> λ )

for some a > 2. A typical choice is a = 3.7 as suggested by Fan and Li (2001). It was shown in Fan

et al. (2014b) that one only needs to take β̂
0
= β̂

lasso
and run the LLA algorithm for two iterations

to obtain the quantile SCAD estimator.
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3 Alternating Direction Algorithm

3.1 Review of two existing algorithms

A typical approach to solving the weighted L1-penalized quantile regression is to cast it as a linear

program and then solve the linear program using the interior point method. The popular R package

quantreg (Koenker, 2015) is based on an interior-point method specifically designed for solving

the (penalized) quantile regression (Koenker and Ng, 2005). Note that the weighted L1-penalized

quantile regression (1) is equivalent to the linear program

minimize τ1T
nu+(1− τ)1T

nv+(nλ )wT
β
++(nλ )wT

β
−

subject to u−v+Xβ
+−Xβ

− = y

u,v ∈ Rn
+, β

+,β− ∈ Rp
+,

(2)

where y = (y1, . . . ,yn)
T and X = (x1, . . . ,xn)

T. Problem (2) is often solved with the interior point

method (Koenker and Ng, 2005) in its dual domain

minimize (−yT, 0T
p)d

subject to [XT (2nλ )diag(w)]d = (1− τ)XT1n +(nλ )w

0≤ dk ≤ 1, k = 1, . . . ,n+ p,

(3)

where diag(w) denotes the diagonal matrix with the components of w on its diagonals. It can be seen

that the dual problem (3) involves p equality constraints. We note that the interior point algorithm is

the state-of-the-art method for fitting penalized quantile regression in low to moderate dimensions,

but it fails to scale well with high dimensions. For numerical evidence, see Sections 4 and 5. This

observation motivates us to consider an efficient alternative for fitting the high-dimensional quantile

regression.

During the revision, one reviewer called our attention to the algorithm by Yi and Huang (2016).

Specifically, Yi and Huang (2016) proposed a coordinate descent algorithm to solve the penalized
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Huber regression and used its solutions to approximate those of the penalized quantile regression.

Their algorithm is implemented in the R package hqreg (Yi, 2016). We include this algorithm

in our numerical comparisons. It is worth mentioning that both interior-point algorithm and our

algorithm solve the exact quantile regression problem in theory, while hqreg offers an approximate

solution.

3.2 Two ADMM algorithms

We now introduce two ADMM algorithms for solving the weighted L1-penalized quantile regression.

These new algorithms can be combined with the LLA algorithm to solve the SCAD penalized

quantile regression.

For ease of notation, we denote Qτ(z) = (1/n)∑
n
i=1 ρτ(zi) for z = (z1, . . . ,zn)

T. In order to

handle the non-smoothness of the check loss, we introduce new variables z = y−Xβ . By convexity,

problem (1) is equivalent to

minβ ,z Qτ(z)+λ‖w◦β‖1

subject to Xβ + z = y.
(4)

Fix σ > 0 and the augmented Lagrangian function of (4) is

Lσ (β ,z,θ) :=Qτ(z)+λ‖w◦β‖1−〈θ ,Xβ + z−y〉+ σ

2
‖Xβ + z−y‖2

2,

where θ ∈Rn is the Lagrangian multiplier, and 〈·, ·〉 and ‖·‖2 denote the inner product and L2-norm

in the Euclidean space, respectively. Following Boyd et al. (2011), the iterations for the standard
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ADMM algorithm are given by

β
k+1 := argmin

β

Lσ (β ,zk,θ k)

zk+1 := argmin
z

Lσ (β
k+1,z,θ k)

θ
k+1 := θ

k−σ(Xβ
k+1 + zk+1−y),

where (β k,zk,θ k) denotes the kth iteration of the algorithm for k ≥ 0. More specifically, the

iterations are

β step : β
k+1 := argmin

β

λ‖w◦β‖1−〈θ k,Xβ 〉+ σ

2
‖Xβ + zk−y‖2

2

z step : zk+1 := argmin
z

Qτ(z)−〈θ k,z〉+ σ

2
‖z+Xβ

k+1−y‖2
2

θ step : θ
k+1 := θ

k−σ(Xβ
k+1 + zk+1−y).

(5)

Note that in the z step, the update of zk+1 has a closed form solution which is very easy

to compute. This property directly addresses the computational difficulty caused by the non-

smoothness of the quantile regression check loss. In fact, the update of zk+1 can be carried out

component-wisely. For i = 1, . . . ,n, we have

zk+1
i := argmin

zi

1
n

ρτ(zi)−θ
k
i zi +

σ

2
(zi +xT

i β
k+1− yi)

2

= argmin
zi

ρτ(zi)+
nσ

2

[
zi−

(
yi−xT

i β +
1
σ

θ
k
i

)]2

.

To solve the above univariate minimization problems, we consider a slightly more general form

Proxρτ
[ξ ,α] := argmin

u∈R
ρτ(u)+

α

2
(u−ξ )2, (6)

whose solution is given in the following lemma. The proof of the lemma can be found in the online

supplementary materials.
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Lemma 1. Given τ ∈ (0,1) and α > 0, the proximal mapping Proxρτ
[ξ ,α] in (6) has explicit

expression: Proxρτ
[ξ ,α] = ξ −max((τ−1)/α, min(ξ ,τ/α)) , or equivalently,

Proxρτ
[ξ ,α] =


ξ − τ

α
, if ξ > τ

α

0, if τ−1
α
≤ ξ ≤ τ

α

ξ − τ−1
α

, if ξ < τ−1
α

.

The operator Proxρτ
is called the proximal mapping of ρτ . We now apply the proximal mapping

formula to the z step and obtain

zk+1
i = Proxρτ

[
yi−xT

i β +
1
σ

θ
k
i , nσ

]
, i = 1, . . . ,n. (7)

Unlike the z step, the β step does not have a simple closed-form formula with a general design

matrix X. It would be nice to use a simple closed-form update formula for β as well, then the

resulting algorithm is more transparent and easy to code. To this end, we adopt a widely used

trick known as “linearization" from the operational research literature. Specifically, we consider

adding a proximal term to the objective function in the β step and replace the β step in the standard

ADMM (5) with the following augmented β step:

Augmented β step : β
k+1 := argmin

β

λ‖w◦β‖1−〈θ k,Xβ 〉+ σ

2
‖Xβ + zk−y‖2

2 +
1
2
‖β −β

k‖2
S,

where S is a positive semi-definite matrix. We let S = σ(ηIp−XTX) with η ≥ Λmax(XTX), where

Λmax(·) denotes the largest eigenvalue of a real symmetric matrix. Here ‖v‖2
S := 〈v,Sv〉 is the

semi-norm induced by the semi-inner product defined via S. In the augmented β step, the update of

β can be also carried out component-wisely,

β
k+1 = argmin

β

λ‖w◦β‖1 +
ση

2

∥∥∥β − σηβ
k +XT(θ k +σy−σXβ

k−σzk)

ση

∥∥∥2

2

=

(
Shrink

[
β

k
j +

1
ση

XT
j (θ

k +σy−σXβ
k−σzk),

λw j

ση

])
1≤ j≤p

,

(8)
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where Shrink[u,α] = sgn(u)max(|u|−α,0) denotes the soft shrinkage operator and X j denotes the

jth column of X, j = 1, . . . , p.

Based on (7) and (8), we present the proximal ADMM (pADMM) algorithm for solving the

penalized quantile regression

Augmented β step : β
k+1 := argmin

β

λ‖w◦β‖1−〈θ k,Xβ 〉+ σ

2
‖Xβ + zk−y‖2

2 +
1
2
‖β −β

k‖2
S

z step : zk+1 := argmin
z

Qτ(z)−〈θ k,z〉+ σ

2
‖z+Xβ

k+1−y‖2
2

θ step : θ
k+1 := θ

k− γσ(Xβ
k+1 + zk+1−y),

where γ is a constant controlling the step length for the θ step. We summarize the proximal ADMM

algorithm in Algorithm 1.

Note that the β step in the ADMM can be also solved with successive linearization minimization,

which is equivalent to a proximal gradient method, such as FISTA (Beck and Teboulle, 2009; Parikh

and Boyd, 2013). In that sense, our augmented β step can be viewed as a one-step iterate of FISTA

with step length 1/(ση). Just like FISTA, on one hand, the proximal ADMM algorithm can be

really fast with a reasonable step size, while on the other hand, it can become quite slow when the

step size is small. Therefore, when η is large, the step size for the update becomes really small

which could result in too many iterations of the algorithm. However, η is indeed large when the

dimension p is high. To address this concern, we investigate the ADMM algorithm and notice

that the β step in (5) can be viewed as a lassoed least squares problem. Although the lassoed

least squares problem does not have a closed form solution in general, it can be directly solved

very efficiently by coordinate descent (Friedman et al., 2007). In other words, we can afford to

call a lassoed least squares solver based on coordinate descent to handle the β step in the ADMM

algorithm. We use scdADMM to denote the combination of sparse coordinate descent and ADMM.

We summarize the scdADMM algorithm in Algorithm 2.
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Algorithm 1: pADMM – Proximal ADMM algorithm for solving the weighted L1-penalized
quantile regression.

1. Initialize the algorithm with (β 0,z0,θ 0).

2. For k = 0,1,2, . . . , repeat steps (2.1) – (2.3) until the convergence criterion is met.

(2.1) Update β
k+1←

(
Shrink

[
β k

j +
1

ση
XT

j (θ
k +σy−σXβ

k−σzk),
λw j
ση

])
1≤ j≤p

.

(2.2) Update zk+1←
(

Proxρτ

[
yi−xT

i β
k+1 +σ−1θ k

i ,nσ
])

1≤i≤n
.

(2.3) Update θ
k+1← θ

k− γσ(Xβ
k+1 + zk+1−y).

Algorithm 2: scdADMM – Sparse coordinate descent ADMM algorithm for solving the
weighted L1-penalized quantile regression with coordinate descent steps.

1. Initialize the algorithm with (β 0,z0,θ 0).

2. For k = 0,1,2, . . . , repeat steps (2.1) – (2.3) until the convergence criterion is met.

(2.1) Carry out the coordinate descent steps (2.1.1) – (2.1.3).

(2.1.1) Initialize β
k,0 = β

k.

(2.1.2) For m = 0,1,2, . . . , repeat step (2.1.2.1) until convergence.
(2.1.2.1) For j = 1, . . . , p, update

β
k,m+1
j ←

Shrink
[
∑

n
i=1 xi j

{
θ k

i +σ

(
yi− zk

i −∑t 6= j xitβ
k,m+I(t< j)
t

)}
,λw j

]
σ‖X j‖2

2
.

(2.1.3) Set β
k+1← β

k,m+1.

(2.2) Update zk+1←
(

Proxρτ

[
yi−xT

i β
k+1 +σ−1θ k

i ,nσ
])

1≤i≤n
.

(2.3) Update θ
k+1← θ

k−σ(Xβ
k+1 + zk+1−y).
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3.3 Convergence theory

In this section, we establish the convergence properties of scdADMM and pADMM. Note that

the convergence of the scdADMM algorithm (Algorithm 2) can be directly obtained from Boyd

et al. (2011). Therefore, we only establish the convergence result for the pADMM algorithm

(Algorithm 1). We show that with proper choice of the step length γ, the pADMM algorithm yields

a sequence {(β k,zk), k = 1,2, . . .} that converges to a global minimizer of problem (4).

Theorem 1. For given λ > 0,σ > 0,0 < τ < 1,0 < γ < (
√

5+ 1)/2 and a component-wisely

nonnegative weight vector w, let {(β k,zk,θ k)} be generated by the pADMM algorithm as described

in Algorithm 1. Then, the sequence {(β k,zk), k = 0,1,2, . . .} converges to an optimal solution

(β ∗,z∗) to (4) and {θ k, k = 0,1,2, . . .} converges to an optimal solution θ
∗ to the dual problem

of (4). Equivalently, {β k, k = 0,1,2, . . .} converges to a global minimizer of problem (1). Moreover,

when γ = 1, the sequence of norms {‖β k−β
∗‖2

S +σ‖zk− z∗‖2
2 +σ−1‖θ k−θ

∗‖2
2, k ≥ 0} is non-

increasing and satisfies ‖β k−β
∗‖2

S +σ‖zk− z∗‖2
2 +σ−1‖θ k−θ

∗‖2
2 = O(1/k) as k→ ∞.

The proof of the theorem can be found in the online supplementary materials. Note that the

convergence of the algorithm is guaranteed regardless of the value σ takes. According to the

theorem, when γ = 1, the worst-case convergence rate of the algorithm is at least of order 1/k

in terms of the iterate norms defined in the theorem, where k is the iteration number. Moreover,

by setting γ = 1 and S = 0, the convergence results in Theorem 1 can be naturally applied to

scdADMM.

3.4 Implementation Details

We implement Algorithms 1–2 in an R package called FHDQR, where FHDQR stands for fast high-

dimensional quantile regression. In this section, we describe some important implementation details

of the package.

When no λ value is specified, the package will use a default λ sequence that is calculated based

on the Karush–Kuhn–Tucker (KKT) condition. This λ sequence is determined by its largest element
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λmax, a factor δ and the number of elements M in the sequence such that the smallest element is

given by λmin = δλmax and the kth element of the sequence is calculated by

λk = λ

M−k
M−1

max λ

k−1
M−1

min , k = 1, . . . ,M.

This makes the λ sequence a decreasing arithmetic progression on the logarithmic scale. By default,

M is 100 and δ is 0.001 when n ≥ p and 0.05 when n < p. We select λmax to make sure that all

coefficients β j,1≤ j≤ p, are shrunk to zero. One such λmax can be derived from the KKT condition.

Specifically, β̂ is an optimal solution to problem (1) if

0 ∈ −1
n

n

∑
i=1

∂ρτ(yi−xT
i β̂ )xi j +λw j∂ |β̂ j| (9)

for all j = 1, . . . , p, where ∂ρτ(u) = (τ−1/2)+(1/2)∂ |u| and

∂ |u|=

 sgn(u), if u 6= 0

[−1,1], if u = 0.

Here, ∂ f (x) denotes the sub-differential of a convex function f at x and sgn(·) denotes the sign

function. For simplicity, assume that all w j’s are positive. Then it follows directly from (9) that the

choice

λmax = max
1≤ j≤p

w−1
j

{∣∣∣2τ−1
2n

n

∑
i=1

xi j +
1

2n ∑
i/∈Z

sgn(yi)xi j

∣∣∣+ 1
2n ∑

i∈Z
|xi j|

}
,

shrinks all coefficients toward exact zero, where Z = {i : yi = 0,1≤ i≤ n}.

We also implement the warm-start technique (Friedman et al., 2010, 2007), which uses the

solution at the current λ value as the initial value for the solution at the next λ value.

The ADMM algorithm is iterated until some stopping criterion is met. We adopt the stopping

criterion from Boyd et al. (2011), Section 3.3.1. Specifically, the algorithm is terminated either
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when the sequence {(β k,zk,θ k)} meets the following criterion

‖Xβ
k + zk−y‖2 ≤

√
nε1 + ε2 max{‖Xβ

k‖2,‖zk‖2,‖y‖2},

σ‖XT(zk− zk−1)‖2 ≤
√

pε1 + ε2‖XT
θ

k‖2,

where typical choices are ε1 = 10−3 and ε2 = 10−3, or when the number of ADMM iterations

exceeds a certain number, say 105, at each λ value along the sequence.

4 Numerical Experiments

In this section, we first compare the running times of the ADMM algorithms with those of the R

packages quantreg and hqreg for fitting penalized quantile regression and then investigate the

finite-sample statistical performance of penalized quantile regression as compared to the penalized

least squares.

4.1 Timing Comparisons

We have conducted extensive timing comparisons under various scenarios of high-dimensional

models. Through these timing comparisons, we demonstrate that FHDQR compares favorably

with quantreg and hqreg. For the timing comparison, we only consider the lasso penalty for

demonstration purposes. All timings reported are performed on an Intel Core i5-3210M processor

(single-core, 2.5 GHz).

The first study. In the first setup, we consider a popular simulation model from Friedman et al.

(2010) to generate data for timing comparison. We simulate data with n observations from the linear

model

Y =
p

∑
j=1

X jβ j + k · ε, (10)

where (X1, . . . ,Xp)
T ∼ N(0,Σ) with Σ = (α +(1−α)I(i = j))p×p, β j = (−1) j exp(−(2 j−1)/20),

ε ∼ N(0,1), and k is chosen such that the signal-noise ratio of the data is 3.0. For our timing
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comparison, we focus on the high-dimensional situation where n = 100 and p = 1000 or 5000,

with various choices of the correlation α ∈ {0,0.1,0.2,0.5,0.9,0.95}. Under each scenario, the

timings in seconds are recorded by accumulating the overall time spent on fitting the lasso penalized

quantile regression over the same sequence of one hundred λ values. For demonstration purposes,

three different τ values, 0.25, 0.50 and 0.75, are considered.

The average timings over three runs are reported in Tables 1–2. We see that the ADMM

algorithms and hqreg are a lot faster than quantreg and scdADMM is the fastest. When the

correlation α is small, pADMM is very fast. When the correlation grows, pADMM becomes slower.

This can be understood by observing that Λmax(XTX) becomes larger as the correlation grows. It is

nice to see that scdADMM and hqreg are insensitive to the correlation.

Note that in order to do a meaningful timing comparison, we need to check the objective function

values of problem (1) at the optimal solutions computed by the different algorithms and make sure

different algorithms all yield the same (numerically speaking) objective function values. See the

online supplementary materials for a graphical illustration.

The second study. The second model setup is inspired by the simulation studies in Fan et al.

(2014a). Specifically, the model for the simulated data is

yi = xT
i β
∗+ εi, xi ∼ N(0,Σx), i = 1, . . . ,n, (11)

where the true coefficient vector is fixed at

β
∗ = (2,0,1.5,0,0.8,0,0,1,0,1.75,0,0,0.75,0,0,0.3,0T

p−16)
T.

In our numerical experiments, a variety of error distributions are considered, including: (1) the

normal distribution N(0,2) with variance 2; (2) the mixture normal distribution 0.9N(0,1) +

0.1N(0,25), denoted by MN1; (3) the mixture normal distribution N(0,σ2) with σ ∼ Unif(1,5),

denoted by MN2; (4) the Laplace distribution with density d(u) = 0.5exp(−|u|); (5) the scaled

Student’s t-distribution with 4 degrees of freedom,
√

2× t4; and (6) the Cauchy distribution with

16



density d(u) = π−1(1+ u2)−1. For the covariance matrix Σx, several scenarios are also consid-

ered, from the independence structure Σx = Ip, to the autoregressive structures Σx = (0.5|i− j|)

and (0.8|i− j|), denoted by AR0.5 and AR0.8 respectively, to the compound symmetric structures

Σx = (α +(1−α)I(i = j)) with α = 0.5 and 0.8, denoted by CS0.5 and CS0.8 respectively.

For all of the above settings, we fix n = 200 and p = 1000 in the timing comparison. The

timings, which are accumulated over one hundred pre-chosen λ values, are reported in Table 3. We

report results at levels τ = 0.50 and τ = 0.75 for demonstration purposes. Several observations can

be readily made from this timing comparison. First of all, it is clear from Table 3 that the ADMM

algorithms are very fast. Secondly, pADMM works fairly well for covariance structures I, AR0.5

and AR0.8 and becomes slower for CS0.5 and CS0.8. Thirdly, the timings for scdADMM exhibit

certain insensitivity to the covariance structures and error distributions. This robustness in timing

is also observed in quantreg. Lastly, hqreg takes longer time to fit the data under the Cauchy

distribution even when the covariance structures have small correlations.

Table 1: Timings (in seconds) for running lasso penalized quantile regression (τ = 0.25, 0.5 and 0.75) on model (10)
with n = 100 and p = 1000 over one hundred λ values. Timings reported are averaged over three runs. quantreg:

timing by the quantreg package (300+: above 300 seconds); hqreg: timing by the hqreg package; scdADMM and
pADMM: timing by our package FHDQR.

Correlation (α)

0.00 0.10 0.20 0.50 0.90 0.95

τ = 0.25
quantreg 300+ 300+ 300+ 300+ 300+ 300+
hqreg 9.52 9.32 9.82 9.86 7.05 5.63
pADMM 0.57 4.38 5.85 12.14 18.43 11.62
scdADMM 1.41 1.37 1.36 1.23 1.00 0.94

τ = 0.50
quantreg 300+ 300+ 300+ 300+ 300+ 300+
hqreg 6.88 6.64 6.89 7.92 8.65 5.29
pADMM 0.62 5.36 7.85 15.47 30.34 21.66
scdADMM 1.26 1.20 1.26 1.18 1.19 0.91

τ = 0.75
quantreg 300+ 300+ 300+ 300+ 300+ 300+
hqreg 8.65 8.34 8.81 8.87 8.37 5.76
pADMM 0.55 4.45 6.26 12.12 21.49 16.40
scdADMM 1.42 1.39 1.48 1.34 1.15 1.20

In Section 4.2, we will compare the finite-sample statistical performance of the penalized

quantile regression to that of the penalized least squares and show that the penalized quantile
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Table 2: Timings (in seconds) for running lasso penalized quantile regression (τ = 0.25, 0.5 and 0.75) on model (10)
with n = 100 and p = 5000 over one hundred λ values. Timings reported are averaged over three runs. quantreg:

timing by the quantreg package (20000+: above 20000 seconds); hqreg: timing by the hqreg package; scdADMM
and pADMM: timing by our package FHDQR.

Correlation (α)

0.00 0.10 0.20 0.50 0.90 0.95

τ = 0.25
quantreg 20000+ 20000+ 20000+ 20000+ 20000+ 20000+
hqreg 14.99 14.89 14.60 15.08 13.63 17.58
pADMM 12.57 44.35 62.06 107.52 168.39 147.23
scdADMM 6.19 6.17 5.89 5.93 5.89 5.39

τ = 0.50
quantreg 20000+ 20000+ 20000+ 20000+ 20000+ 20000+
hqreg 9.82 9.76 10.26 11.13 14.34 17.55
pADMM 12.69 51.30 72.92 135.98 187.20 167.19
scdADMM 5.71 5.50 5.32 5.50 6.13 5.98

τ = 0.75
quantreg 20000+ 20000+ 20000+ 20000+ 20000+ 20000+
hqreg 14.47 15.19 14.82 15.96 14.33 13.61
pADMM 12.76 44.15 58.99 104.38 151.69 115.43
scdADMM 6.21 6.36 6.23 5.44 5.65 5.44

regression has better performance under some error distributions. We note that the penalized least

squares is faster in timing due to the smooth quadratic error loss it uses. Specifically, we run lasso

penalized least squares for model (11) along a sequence of pre-chosen λ sequence using the R

package glmnet (Friedman et al., 2010). For each setting of model (11), this takes glmnet

0.04–0.12 seconds. Compared to Table 3, we can clearly get the message that the penalized least

squares is faster, but our algorithm makes the penalized quantile regression a worthy competitor in

terms of timing.

4.2 Finite Sample Performance

We investigate the finite-sample performance of the penalized quantile regression. The purpose is to

compare penalized quantile regression with penalized least squares using the same penalty function.

Many researchers have done simulation studies to show that the penalized quantile regression has

some unique advantages over the penalized least squares. Our simulation study is more extensive

than the existing results.
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Table 3: Timings (in seconds) for running lasso penalized quantile regression (τ = 0.5 and 0.75) on model (11) with
n = 200 and p = 1000 over one hundred λ values. All timings reported are averaged over three runs. quantreg: timing

by the quantreg package (400+: above 400 seconds); hqreg: timing by the hqreg package; scdADMM and
pADMM: timing by our package FHDQR. I: independent structure; AR0.5 (AR0.8): autoregressive structure with

correlation 0.5 (0.8); CS0.5 (CS0.8): compound symmetric structure with correlation 0.5 (0.8).

Error

Covariance Method N(0,2) MN1 MN2 Laplace
√

2× t4 Cauchy

τ = 0.50
I quantreg 400+ 400+ 400+ 400+ 400+ 400+

hqreg 10.45 14.35 21.10 10.45 13.95 32.96
scdADMM 3.03 3.06 4.31 2.88 3.39 5.88
pADMM 1.52 1.46 1.45 1.47 1.46 0.46

AR0.5 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 11.19 12.73 21.61 10.48 14.11 24.56
scdADMM 3.76 3.89 4.99 3.47 4.11 5.85
pADMM 1.83 1.80 1.76 1.76 1.77 0.55

AR0.8 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 9.28 8.61 20.03 8.17 11.31 16.06
scdADMM 5.63 5.46 6.91 5.16 5.62 6.80
pADMM 2.63 2.42 2.82 2.43 2.53 0.78

CS0.5 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 13.70 11.64 21.96 10.11 14.32 15.04
scdADMM 7.11 7.34 9.60 6.77 7.68 8.49
pADMM 19.91 18.58 21.49 17.96 20.12 5.65

CS0.8 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 16.88 12.86 19.17 11.01 13.27 10.04
scdADMM 9.11 9.14 10.67 9.18 9.61 9.92
pADMM 13.96 13.45 15.39 14.24 12.83 3.84

τ = 0.75
I quantreg 400+ 400+ 400+ 400+ 400+ 400+

hqreg 14.34 15.11 29.34 10.68 14.07 37.02
scdADMM 3.53 3.58 5.07 3.28 3.62 6.48
pADMM 1.33 1.34 1.30 1.22 1.34 0.40

AR0.5 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 11.99 13.12 25.51 10.66 14.48 30.96
scdADMM 4.00 4.22 5.42 3.96 4.38 6.98
pADMM 1.43 1.50 1.55 1.37 1.55 0.45

AR0.8 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 9.95 10.92 19.24 8.30 9.98 13.51
scdADMM 6.54 6.09 7.38 6.03 6.30 7.67
pADMM 2.03 2.19 2.20 2.06 2.08 0.66

CS0.5 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 14.91 13.07 25.15 10.48 13.48 14.55
scdADMM 8.23 8.10 9.57 7.28 8.84 10.79
pADMM 17.66 16.33 18.70 15.76 18.6 4.92

CS0.8 quantreg 400+ 400+ 400+ 400+ 400+ 400+
hqreg 15.23 12.13 19.75 9.64 13.54 8.32
scdADMM 9.74 9.87 11.18 9.49 11.59 6.12
pADMM 14.24 13.13 16.67 13.24 14.54 4.11
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We adopt the six error distributions and five covariance structures that we used in the second

timing study in Section 4.1. Under each scenario, we investigate the estimation and selection

performance of the penalized least squares regression and the penalized quantile regression. Since

we observe similar statistical performance for the penalized quantile regression with τ = 0.25 and

τ = 0.75, we only present the results for τ = 0.50 and τ = 0.75. All three types of penalties, the

lasso, adaptive lasso and folded concave (specifically, SCAD), are considered in the simulation. The

results are summarized in Tables 4–8. It is clear that the penalized quantile regression performs

better than the penalized least squares under heavy-tailed error distributions, such as Cauchy.

4.3 A Real Data Example

The microarray data of Scheetz et al. (2006) comprise gene expression levels of 31,042 probes

on 120 twelve-week-old laboratory rats. The data were used to understand the gene regulation in

mammalian eyes and to gain insight into genetic variation related to human eyes. We apply the

penalized quantile regression to analyze this set of microarray data.

Following Scheetz et al. (2006) and Huang et al. (2008), we select the 18,976 probes that

exhibited sufficient variation. Among those probes, there is one probe, 1389163_at, corresponding

to gene TRIM32, that was found to be associated with the Bardet–Biedl syndrome (Chiang et al.,

2006), a human genetic disorder that affects many parts of the body and primarily the retina. We

study how the expression of this gene depends on the expressions of all other 18,975 genes. We

first standardize the 18,975 gene expressions and select the 3,000 probes with the largest variances.

Those 3,000 expressions are then analyzed on a logarithmic scale with base two.

In our analysis, we also conduct timing comparison on the processed data aforementioned

(n = 120, p = 3000) among quantreg, hqreg and FHDQR for the lasso penalized quantile

regression with τ = 0.25, 0.50 and 0.75. The timings are reported in Table 9 and they demonstrate

the efficiency of scdADMM. One possible reason why pADMM takes longer time than scdADMM

and hqreg is because of the high correlation among gene expressions.

We also fit the lasso penalized quantile regression on the data to select genes that are most
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Table 4: Estimation and selection performance of the penalized least squares and penalized quantile regression (with
τ = 0.5 and 0.75) for model (11) with independent covariates Σ = I. The estimation accuracy is measured by the L1
and L2 losses and the selection accuracy is measured by the number of false positives (FP) and false negatives (FN).

Numbers reported are averaged over 100 independent runs with their respective standard errors listed in the parentheses.

Σ = I

Lasso Alasso SCAD

L1, L2 losses
N(0,2) LS 3.492 (0.088), 0.783 (0.011) 2.142 (0.081), 0.583 (0.014) 0.806 (0.020), 0.383 (0.007)

QR(0.50) 4.941 (0.180), 0.906 (0.014) 1.317 (0.038), 0.535 (0.013) 1.331 (0.059), 0.462 (0.010)
QR(0.75) 4.581 (0.125), 0.995 (0.018) 1.344 (0.045), 0.570 (0.018) 1.390 (0.051), 0.493 (0.012)

MN1 LS 4.217 (0.097), 0.977 (0.018) 3.662 (0.180), 0.869 (0.027) 1.105 (0.043), 0.510 (0.017)
QR(0.50) 4.133 (0.141), 0.750 (0.011) 0.877 (0.027), 0.385 (0.010) 0.939 (0.030), 0.349 (0.007)
QR(0.75) 3.877 (0.106), 0.867 (0.016) 1.094 (0.034), 0.473 (0.013) 1.069 (0.038), 0.400 (0.008)

MN2 LS 6.770 (0.164), 1.596 (0.023) 8.990 (0.340), 1.948 (0.039) 2.724 (0.097), 1.173 (0.033)
QR(0.50) 8.124 (0.320), 1.714 (0.027) 3.281 (0.080), 1.256 (0.026) 3.198 (0.135), 1.147 (0.031)
QR(0.75) 7.737 (0.277), 1.918 (0.031) 4.185 (0.111), 1.596 (0.033) 4.190 (0.158), 1.520 (0.037)

Laplace LS 3.257 (0.079), 0.759 (0.012) 2.095 (0.080), 0.579 (0.014) 0.784 (0.028), 0.366 (0.010)
QR(0.50) 3.732 (0.118), 0.723 (0.014) 0.807 (0.026), 0.367 (0.010) 0.864 (0.029), 0.315 (0.008)
QR(0.75) 4.102 (0.144), 0.861 (0.016) 1.171 (0.041), 0.495 (0.015) 1.293 (0.057), 0.454 (0.012)√

2× t4 LS 4.722 (0.120), 1.058 (0.020) 4.275 (0.200), 0.992 (0.029) 1.337 (0.057), 0.606 (0.024)
QR(0.50) 5.489 (0.179), 1.043 (0.017) 1.493 (0.044), 0.593 (0.016) 1.491 (0.068), 0.518 (0.014)
QR(0.75) 5.706 (0.172), 1.220 (0.022) 1.866 (0.076), 0.771 (0.029) 1.794 (0.066), 0.645 (0.021)

Cauchy LS 11.262 (0.951), 3.442 (0.071) 25.593 (4.345), 8.310 (3.370) 325.098 (78.041), 32.315 (7.091)
QR(0.50) 5.326 (0.185), 1.098 (0.021) 1.611 (0.072), 0.662 (0.027) 1.543 (0.077), 0.521 (0.020)
QR(0.75) 7.015 (0.213), 1.642 (0.038) 2.962 (0.124), 1.167 (0.042) 2.924 (0.154), 0.992 (0.037)

FP, FN
N(0,2) LS 42.74 (1.81), 0.38 (0.05) 12.60 (0.69), 0.43 (0.05) 0.22 (0.05), 0.84 (0.04)

QR(0.50) 62.19 (3.28), 0.37 (0.05) 2.43 (0.27), 0.87 (0.04) 9.68 (1.11), 0.62 (0.05)
QR(0.75) 46.48 (2.38), 0.51 (0.05) 1.68 (0.16), 0.93 (0.05) 8.83 (0.82), 0.67 (0.05)

MN1 LS 39.86 (1.49), 0.53 (0.05) 16.85 (0.98), 0.57 (0.05) 0.49 (0.11), 1.02 (0.04)
QR(0.50) 63.10 (3.18), 0.23 (0.04) 1.18 (0.15), 0.56 (0.05) 8.27 (0.84), 0.44 (0.05)
QR(0.75) 42.40 (1.83), 0.41 (0.05) 1.26 (0.15), 0.81 (0.04) 7.87 (0.80), 0.52 (0.05)

MN2 LS 36.98 (1.50), 1.14 (0.08) 21.76 (1.21), 1.55 (0.08) 1.32 (0.14), 2.15 (0.09)
QR(0.50) 47.99 (3.05), 1.31 (0.09) 3.76 (0.30), 2.07 (0.10) 8.01 (0.88), 1.61 (0.09)
QR(0.75) 32.99 (2.33), 2.04 (0.11) 3.17 (0.28), 2.83 (0.10) 7.30 (0.81), 2.59 (0.10)

Laplace LS 39.42 (1.77), 0.22 (0.04) 11.79 (0.66), 0.46 (0.05) 0.31 (0.08), 0.67 (0.05)
QR(0.50) 55.55 (2.31), 0.20 (0.04) 1.11 (0.14), 0.62 (0.05) 9.19 (0.92), 0.31 (0.05)
QR(0.75) 47.49 (2.64), 0.35 (0.05) 1.54 (0.17), 0.83 (0.05) 9.58 (0.90), 0.61 (0.05)√

2× t4 LS 42.71 (1.77), 0.59 (0.05) 17.76 (1.01), 0.67 (0.05) 0.56 (0.10), 1.11 (0.06)
QR(0.50) 58.34 (2.77), 0.42 (0.05) 2.88 (0.24), 0.90 (0.05) 9.86 (1.07), 0.75 (0.05)
QR(0.75) 47.93 (2.50), 0.67 (0.06) 2.26 (0.18), 1.26 (0.07) 9.15 (0.67), 0.83 (0.06)

Cauchy LS 13.35 (3.15), 6.07 (0.15) 30.01 (5.62), 5.71 (0.18) 108.66 (5.89), 5.00 (0.13)
QR(0.50) 51.16 (2.46), 0.57 (0.05) 2.32 (0.21), 1.11 (0.07) 11.17 (0.95), 0.66 (0.05)
QR(0.75) 43.46 (2.22), 1.21 (0.07) 3.02 (0.23), 2.01 (0.11) 11.00 (1.04), 1.34 (0.09)
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Table 5: Estimation and selection performance of the penalized least squares and penalized quantile regression (with
τ = 0.5 and 0.75) for model (11) with covariance matrix Σ = (0.5|i− j|). The estimation accuracy is measured by the L1
and L2 losses and the selection accuracy is measured by the number of false positives (FP) and false negatives (FN).

Numbers reported are averaged over 100 independent runs with their respective standard errors listed in the parentheses.

Σ = (0.5|i− j|)

Lasso Alasso SCAD

L1, L2 losses
N(0,2) LS 2.787 (0.081), 0.679 (0.011) 1.718 (0.070), 0.539 (0.014) 0.873 (0.024), 0.404 (0.009)

QR(0.50) 3.896 (0.141), 0.803 (0.012) 1.199 (0.039), 0.499 (0.013) 1.250 (0.049), 0.455 (0.009)
QR(0.75) 3.612 (0.111), 0.853 (0.014) 1.372 (0.044), 0.591 (0.017) 1.369 (0.054), 0.511 (0.015)

MN1 LS 3.395 (0.102), 0.821 (0.016) 2.850 (0.135), 0.790 (0.025) 1.149 (0.038), 0.519 (0.017)
QR(0.50) 3.027 (0.107), 0.628 (0.011) 0.858 (0.026), 0.384 (0.009) 1.042 (0.046), 0.364 (0.009)
QR(0.75) 3.369 (0.114), 0.781 (0.016) 1.002 (0.032), 0.449 (0.013) 1.081 (0.040), 0.395 (0.008)

MN2 LS 5.764 (0.163), 1.429 (0.024) 7.052 (0.285), 1.705 (0.038) 2.676 (0.100), 1.169 (0.032)
QR(0.50) 6.559 (0.230), 1.464 (0.025) 2.961 (0.095), 1.136 (0.028) 3.140 (0.131), 1.148 (0.031)
QR(0.75) 6.780 (0.204), 1.650 (0.030) 3.581 (0.114), 1.391 (0.032) 3.785 (0.132), 1.417 (0.034)

Laplace LS 2.720 (0.075), 0.667 (0.012) 1.799 (0.074), 0.549 (0.015) 0.814 (0.021), 0.380 (0.008)
QR(0.50) 3.018 (0.108), 0.639 (0.013) 0.788 (0.022), 0.363 (0.009) 0.848 (0.032), 0.312 (0.009)
QR(0.75) 3.345 (0.116), 0.762 (0.014) 1.081 (0.028), 0.472 (0.010) 1.093 (0.038), 0.418 (0.010)√

2× t4 LS 3.794 (0.118), 0.934 (0.019) 3.700 (0.168), 0.961 (0.030) 1.312 (0.062), 0.595 (0.023)
QR(0.50) 4.114 (0.153), 0.880 (0.017) 1.237 (0.038), 0.523 (0.014) 1.408 (0.059), 0.510 (0.016)
QR(0.75) 4.467 (0.138), 1.044 (0.020) 1.760 (0.058), 0.721 (0.022) 1.731 (0.076), 0.635 (0.021)

Cauchy LS 15.047 (2.087), 3.779 (0.166) 21.601 (3.035), 5.217 (0.469) 299.790 (82.662), 29.588 (7.306)
QR(0.50) 3.924 (0.127), 0.902 (0.019) 1.310 (0.051), 0.546 (0.018) 1.324 (0.063), 0.476 (0.016)
QR(0.75) 5.677 (0.201), 1.334 (0.032) 2.369 (0.080), 0.959 (0.031) 2.825 (0.133), 1.009 (0.040)

FP, FN
N(0,2) LS 32.75 (1.51), 0.29 (0.05) 7.82 (0.53), 0.46 (0.05) 0.31 (0.07), 0.76 (0.04)

QR(0.50) 45.12 (2.60), 0.40 (0.05) 1.88 (0.19), 0.72 (0.05) 8.02 (0.94), 0.69 (0.05)
QR(0.75) 34.69 (1.98), 0.52 (0.05) 1.24 (0.14), 0.93 (0.05) 6.72 (0.74), 0.61 (0.05)

MN1 LS 33.39 (1.66), 0.46 (0.05) 11.19 (0.76), 0.61 (0.05) 0.46 (0.06), 0.96 (0.04)
QR(0.50) 44.69 (2.27), 0.13 (0.03) 1.11 (0.13), 0.59 (0.05) 9.94 (1.16), 0.40 (0.05)
QR(0.75) 36.53 (2.02), 0.35 (0.05) 0.75 (0.09), 0.79 (0.05) 7.67 (0.84), 0.48 (0.05)

MN2 LS 29.89 (1.43), 1.11 (0.07) 15.78 (0.97), 1.27 (0.07) 0.97 (0.16), 2.22 (0.08)
QR(0.50) 38.64 (2.15), 1.20 (0.06) 3.44 (0.29), 1.81 (0.08) 7.56 (0.84), 1.69 (0.08)
QR(0.75) 31.64 (1.72), 1.43 (0.08) 2.95 (0.27), 2.35 (0.09) 6.12 (0.65), 2.38 (0.10)

Laplace LS 31.80 (1.34), 0.32 (0.05) 8.86 (0.51), 0.50 (0.05) 0.43 (0.07), 0.70 (0.05)
QR(0.50) 43.52 (2.21), 0.21 (0.04) 0.71 (0.11), 0.57 (0.05) 8.20 (0.88), 0.26 (0.04)
QR(0.75) 38.20 (2.15), 0.32 (0.05) 1.12 (0.11), 0.77 (0.04) 6.32 (0.64), 0.61 (0.05)√

2× t4 LS 31.88 (1.51), 0.62 (0.05) 13.59 (0.91), 0.69 (0.05) 0.52 (0.09), 1.14 (0.04)
QR(0.50) 42.01 (2.28), 0.43 (0.05) 1.51 (0.15), 0.76 (0.05) 7.94 (0.78), 0.73 (0.05)
QR(0.75) 35.98 (1.93), 0.68 (0.06) 1.84 (0.19), 1.11 (0.06) 7.12 (0.72), 0.89 (0.05)

Cauchy LS 19.81 (4.54), 5.79 (0.17) 25.02 (4.51), 5.35 (0.19) 102.83 (5.77), 4.42 (0.14)
QR(0.50) 37.45 (1.66), 0.51 (0.05) 1.99 (0.19), 0.90 (0.04) 8.60 (0.77), 0.73 (0.04)
QR(0.75) 38.92 (2.17), 1.04 (0.06) 2.50 (0.21), 1.54 (0.09) 8.71 (0.77), 1.48 (0.09)
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Table 6: Estimation and selection performance of the penalized least squares and penalized quantile regression (with
τ = 0.5 and 0.75) for model (11) with covariance matrix Σ = (0.8|i− j|). The estimation accuracy is measured by the L1
and L2 losses and the selection accuracy is measured by the number of false positives (FP) and false negatives (FN).

Numbers reported are averaged over 100 independent runs with their respective standard errors listed in the parentheses.

Σ = (0.8|i− j|)

Lasso Alasso SCAD

L1, L2 losses
N(0,2) LS 2.497 (0.081), 0.718 (0.018) 1.603 (0.061), 0.583 (0.019) 1.272 (0.061), 0.554 (0.023)

QR(0.50) 3.151 (0.125), 0.829 (0.023) 1.726 (0.077), 0.726 (0.028) 1.684 (0.067), 0.660 (0.025)
QR(0.75) 3.477 (0.105), 0.927 (0.020) 1.798 (0.078), 0.765 (0.030) 1.960 (0.085), 0.741 (0.025)

MN1 LS 3.453 (0.107), 0.949 (0.024) 2.496 (0.116), 0.856 (0.032) 1.707 (0.091), 0.733 (0.036)
QR(0.50) 2.731 (0.097), 0.697 (0.016) 1.244 (0.046), 0.541 (0.019) 1.229 (0.066), 0.460 (0.013)
QR(0.75) 2.981 (0.111), 0.809 (0.023) 1.375 (0.056), 0.610 (0.023) 1.407 (0.054), 0.558 (0.020)

MN2 LS 5.380 (0.141), 1.552 (0.032) 6.176 (0.219), 1.781 (0.042) 3.859 (0.131), 1.592 (0.048)
QR(0.50) 5.656 (0.200), 1.478 (0.036) 3.746 (0.146), 1.454 (0.048) 3.949 (0.154), 1.512 (0.048)
QR(0.75) 6.397 (0.197), 1.760 (0.041) 4.564 (0.158), 1.801 (0.053) 4.531 (0.157), 1.733 (0.055)

Laplace LS 2.592 (0.082), 0.736 (0.019) 1.499 (0.057), 0.568 (0.019) 1.272 (0.059), 0.560 (0.023)
QR(0.50) 2.417 (0.087), 0.652 (0.016) 1.058 (0.043), 0.474 (0.018) 1.139 (0.054), 0.437 (0.017)
QR(0.75) 3.132 (0.108), 0.844 (0.023) 1.497 (0.068), 0.640 (0.026) 1.638 (0.078), 0.624 (0.023)√

2× t4 LS 3.378 (0.098), 0.983 (0.025) 2.805 (0.127), 0.926 (0.035) 2.175 (0.113), 0.896 (0.041)
QR(0.50) 3.795 (0.146), 0.961 (0.024) 1.778 (0.071), 0.770 (0.029) 1.836 (0.082), 0.716 (0.028)
QR(0.75) 4.120 (0.138), 1.123 (0.028) 2.377 (0.092), 0.989 (0.033) 2.392 (0.108), 0.921 (0.035)

Cauchy LS 24.121 (6.956), 5.008 (0.750) 18.301 (1.326), 5.339 (0.241) 1105.656 (391.026), 96.732 (29.233)
QR(0.50) 3.745 (0.117), 1.004 (0.026) 2.042 (0.098), 0.853 (0.039) 1.777 (0.088), 0.689 (0.031)
QR(0.75) 5.360 (0.177), 1.408 (0.035) 3.380 (0.152), 1.324 (0.050) 3.531 (0.155), 1.308 (0.051)

FP, FN
N(0,2) LS 21.47 (1.16), 0.26 (0.04) 4.37 (0.34), 0.51 (0.05) 0.57 (0.10), 0.86 (0.04)

QR(0.50) 26.49 (1.92), 0.42 (0.05) 1.05 (0.11), 1.04 (0.05) 5.83 (0.73), 0.99 (0.05)
QR(0.75) 25.73 (1.56), 0.53 (0.05) 1.10 (0.11), 1.02 (0.06) 6.42 (0.82), 0.89 (0.05)

MN1 LS 24.03 (1.17), 0.48 (0.05) 5.17 (0.37), 0.70 (0.06) 0.69 (0.10), 1.04 (0.06)
QR(0.50) 28.67 (1.79), 0.24 (0.04) 0.63 (0.08), 0.78 (0.05) 7.21 (1.24), 0.65 (0.05)
QR(0.75) 24.29 (1.44), 0.38 (0.05) 0.69 (0.09), 0.81 (0.05) 5.07 (0.60), 0.86 (0.04)

MN2 LS 19.53 (1.08), 1.24 (0.07) 10.02 (0.69), 1.58 (0.08) 1.33 (0.14), 2.42 (0.08)
QR(0.50) 27.12 (1.74), 1.10 (0.06) 2.73 (0.23), 1.90 (0.10) 4.54 (0.51), 2.12 (0.09)
QR(0.75) 23.18 (1.43), 1.25 (0.07) 2.37 (0.21), 2.38 (0.09) 3.89 (0.42), 2.43 (0.09)

Laplace LS 21.84 (1.16), 0.29 (0.05) 3.46 (0.28), 0.44 (0.05) 0.53 (0.08), 0.89 (0.05)
QR(0.50) 24.47 (1.51), 0.21 (0.04) 0.63 (0.08), 0.69 (0.05) 7.14 (0.89), 0.57 (0.05)
QR(0.75) 24.56 (1.42), 0.44 (0.05) 0.79 (0.10), 0.91 (0.05) 5.69 (0.80), 0.86 (0.04)√

2× t4 LS 19.68 (0.90), 0.51 (0.06) 6.70 (0.40), 0.83 (0.05) 1.26 (0.16), 1.24 (0.07)
QR(0.50) 29.32 (1.89), 0.45 (0.05) 1.13 (0.13), 1.04 (0.06) 5.21 (0.60), 1.04 (0.04)
QR(0.75) 24.13 (1.50), 0.70 (0.06) 1.55 (0.15), 1.30 (0.07) 4.97 (0.53), 1.23 (0.05)

Cauchy LS 17.76 (3.45), 5.33 (0.19) 12.48 (2.26), 5.38 (0.17) 116.48 (6.97), 4.88 (0.11)
QR(0.50) 27.86 (1.63), 0.50 (0.06) 1.55 (0.14), 1.15 (0.06) 5.43 (0.68), 0.95 (0.06)
QR(0.75) 30.64 (1.98), 0.83 (0.07) 2.11 (0.18), 1.78 (0.09) 5.78 (0.60), 1.73 (0.09)
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Table 7: Estimation and selection performance of the penalized least squares and penalized quantile regression (with
τ = 0.5 and 0.75) for model (11) with covariance matrix Σ = (0.5+0.5I(i = j)). The estimation accuracy is measured
by the L1 and L2 losses and the selection accuracy is measured by the number of false positives (FP) and false negatives

(FN). Numbers reported are averaged over 100 independent runs with their respective standard errors listed in the
parentheses.

Σ = (0.5+0.5I(i = j))

Lasso Alasso SCAD

L1, L2 losses
N(0,2) LS 4.229 (0.109), 0.959 (0.017) 1.717 (0.056), 0.610 (0.016) 1.286 (0.060), 0.570 (0.022)

QR(0.50) 5.744 (0.216), 1.177 (0.018) 1.710 (0.060), 0.718 (0.023) 1.681 (0.078), 0.674 (0.024)
QR(0.75) 5.630 (0.152), 1.236 (0.020) 2.016 (0.069), 0.835 (0.026) 2.170 (0.111), 0.824 (0.028)

MN1 LS 5.427 (0.114), 1.250 (0.023) 2.974 (0.107), 0.940 (0.027) 1.997 (0.092), 0.873 (0.036)
QR(0.50) 4.425 (0.118), 0.937 (0.014) 1.212 (0.039), 0.526 (0.015) 1.120 (0.045), 0.454 (0.012)
QR(0.75) 4.664 (0.133), 1.058 (0.021) 1.542 (0.055), 0.652 (0.021) 1.388 (0.062), 0.560 (0.018)

MN2 LS 8.820 (0.229), 2.028 (0.031) 7.923 (0.272), 2.039 (0.046) 4.931 (0.149), 1.821 (0.041)
QR(0.50) 8.815 (0.244), 1.989 (0.032) 5.067 (0.177), 1.749 (0.046) 5.678 (0.306), 1.865 (0.049)
QR(0.75) 9.878 (0.253), 2.292 (0.033) 6.584 (0.210), 2.193 (0.054) 6.539 (0.249), 2.179 (0.055)

Laplace LS 4.217 (0.100), 0.973 (0.018) 1.753 (0.059), 0.620 (0.017) 1.294 (0.051), 0.578 (0.021)
QR(0.50) 4.120 (0.135), 0.887 (0.016) 1.110 (0.042), 0.494 (0.017) 0.991 (0.049), 0.408 (0.012)
QR(0.75) 5.207 (0.168), 1.103 (0.022) 1.667 (0.067), 0.700 (0.025) 1.609 (0.081), 0.666 (0.024)√

2× t4 LS 6.027 (0.158), 1.342 (0.025) 3.706 (0.147), 1.114 (0.032) 2.265 (0.107), 0.975 (0.038)
QR(0.50) 5.941 (0.164), 1.276 (0.022) 2.045 (0.074), 0.842 (0.027) 1.900 (0.079), 0.780 (0.028)
QR(0.75) 6.485 (0.165), 1.456 (0.025) 2.819 (0.108), 1.090 (0.034) 2.959 (0.125), 1.112 (0.035)

Cauchy LS 20.931 (2.691), 4.650 (0.241) 32.018 (3.774), 8.487 (0.627) 472.891 (139.968), 46.890 (12.323)
QR(0.50) 5.905 (0.191), 1.324 (0.028) 2.497 (0.131), 0.978 (0.040) 2.257 (0.113), 0.868 (0.035)
QR(0.75) 8.193 (0.223), 1.904 (0.038) 4.563 (0.211), 1.598 (0.057) 4.904 (0.198), 1.684 (0.051)

FP, FN
N(0,2) LS 38.01 (1.37), 0.53 (0.05) 4.77 (0.26), 0.75 (0.04) 0.56 (0.11), 1.02 (0.04)

QR(0.50) 44.74 (2.64), 0.58 (0.05) 1.44 (0.13), 1.06 (0.05) 2.76 (0.43), 1.05 (0.05)
QR(0.75) 38.27 (1.67), 0.67 (0.05) 1.89 (0.14), 1.29 (0.06) 3.90 (0.81), 1.24 (0.06)

MN1 LS 37.55 (1.10), 0.74 (0.06) 7.95 (0.35), 1.01 (0.06) 0.57 (0.08), 1.58 (0.07)
QR(0.50) 41.34 (1.72), 0.44 (0.05) 0.82 (0.10), 0.90 (0.04) 2.68 (0.47), 0.72 (0.05)
QR(0.75) 35.76 (1.55), 0.57 (0.05) 1.13 (0.12), 1.05 (0.05) 2.39 (0.44), 0.90 (0.04)

MN2 LS 36.00 (1.38), 1.86 (0.07) 15.80 (0.89), 2.16 (0.09) 4.80 (0.65), 2.87 (0.09)
QR(0.50) 34.48 (1.46), 1.94 (0.07) 5.08 (0.31), 2.75 (0.10) 6.23 (0.99), 2.84 (0.08)
QR(0.75) 32.74 (1.38), 2.46 (0.10) 5.61 (0.29), 3.48 (0.09) 5.29 (0.50), 3.34 (0.11)

Laplace LS 37.45 (1.05), 0.45 (0.05) 5.16 (0.25), 0.74 (0.05) 0.43 (0.07), 1.07 (0.04)
QR(0.50) 38.10 (1.96), 0.42 (0.05) 0.65 (0.08), 0.86 (0.05) 2.94 (0.45), 0.71 (0.05)
QR(0.75) 41.16 (1.93), 0.62 (0.05) 1.44 (0.13), 1.13 (0.05) 2.29 (0.46), 1.03 (0.06)√

2× t4 LS 40.64 (1.53), 0.84 (0.06) 9.13 (0.42), 1.03 (0.06) 0.92 (0.20), 1.68 (0.08)
QR(0.50) 41.34 (1.78), 0.83 (0.06) 2.23 (0.17), 1.24 (0.06) 2.03 (0.26), 1.19 (0.06)
QR(0.75) 35.86 (1.43), 0.99 (0.05) 2.90 (0.21), 1.83 (0.08) 3.83 (0.48), 1.71 (0.07)

Cauchy LS 23.75 (3.68), 6.02 (0.12) 19.74 (3.82), 6.42 (0.10) 96.64 (6.00), 5.51 (0.13)
QR(0.50) 40.24 (2.18), 0.80 (0.06) 2.64 (0.24), 1.47 (0.08) 3.49 (0.47), 1.36 (0.07)
QR(0.75) 38.41 (1.69), 1.74 (0.09) 4.46 (0.27), 2.60 (0.12) 4.47 (0.35), 2.60 (0.10)
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Table 8: Estimation and selection performance of the penalized least squares and penalized quantile regression (with
τ = 0.5 and 0.75) for model (11) with covariance matrix Σ = (0.8+0.2I(i = j)). The estimation accuracy is measured
by the L1 and L2 losses and the selection accuracy is measured by the number of false positives (FP) and false negatives

(FN). Numbers reported are averaged over 100 independent runs with their respective standard errors listed in the
parentheses.

Σ = (0.8+0.2I(i = j))

Lasso Alasso SCAD

L1, L2 losses
N(0,2) LS 6.199 (0.119), 1.440 (0.022) 3.354 (0.131), 1.143 (0.030) 3.009 (0.108), 1.258 (0.037)

QR(0.50) 7.938 (0.228), 1.716 (0.024) 3.656 (0.110), 1.419 (0.035) 4.195 (0.246), 1.425 (0.041)
QR(0.75) 7.884 (0.176), 1.820 (0.030) 4.301 (0.146), 1.617 (0.044) 4.960 (0.207), 1.653 (0.033)

MN1 LS 7.969 (0.171), 1.853 (0.030) 5.295 (0.201), 1.609 (0.041) 4.083 (0.184), 1.606 (0.056)
QR(0.50) 6.745 (0.199), 1.415 (0.025) 2.689 (0.089), 1.124 (0.033) 2.635 (0.124), 1.003 (0.032)
QR(0.75) 6.973 (0.151), 1.603 (0.026) 3.421 (0.125), 1.345 (0.037) 3.768 (0.167), 1.311 (0.039)

MN2 LS 11.557 (0.209), 2.766 (0.039) 11.552 (0.358), 3.005 (0.065) 9.011 (0.245), 3.005 (0.061)
QR(0.50) 11.892 (0.385), 2.688 (0.048) 9.125 (0.242), 2.996 (0.061) 9.467 (0.394), 2.839 (0.065)
QR(0.75) 13.183 (0.294), 3.110 (0.040) 10.657 (0.234), 3.431 (0.061) 10.788 (0.262), 3.218 (0.055)

Laplace LS 6.021 (0.132), 1.416 (0.024) 3.593 (0.167), 1.196 (0.034) 2.993 (0.120), 1.260 (0.038)
QR(0.50) 5.902 (0.138), 1.317 (0.024) 2.608 (0.086), 1.087 (0.033) 2.394 (0.154), 0.906 (0.040)
QR(0.75) 7.431 (0.182), 1.703 (0.029) 3.557 (0.120), 1.398 (0.038) 3.645 (0.159), 1.309 (0.037)√

2× t4 LS 7.969 (0.172), 1.878 (0.029) 5.866 (0.221), 1.715 (0.041) 5.089 (0.208), 1.942 (0.056)
QR(0.50) 8.922 (0.259), 1.957 (0.033) 4.689 (0.141), 1.742 (0.043) 4.704 (0.186), 1.652 (0.038)
QR(0.75) 9.250 (0.213), 2.121 (0.030) 5.468 (0.161), 1.971 (0.045) 6.322 (0.239), 2.024 (0.045)

Cauchy LS 23.053 (3.151), 5.664 (0.438) 33.802 (7.390), 8.318 (0.940) 473.486 (133.365), 53.634 (12.914)
QR(0.50) 8.023 (0.243), 1.872 (0.039) 4.608 (0.187), 1.706 (0.054) 4.987 (0.235), 1.727 (0.056)
QR(0.75) 11.009 (0.260), 2.635 (0.046) 8.118 (0.265), 2.714 (0.075) 8.619 (0.331), 2.589 (0.063)

FP, FN
N(0,2) LS 36.49 (0.96), 0.93 (0.05) 6.50 (0.58), 1.45 (0.07) 0.96 (0.12), 2.09 (0.08)

QR(0.50) 38.46 (1.83), 1.33 (0.09) 2.11 (0.14), 2.26 (0.08) 4.95 (1.03), 2.01 (0.09)
QR(0.75) 33.41 (1.16), 1.58 (0.09) 2.61 (0.15), 2.70 (0.09) 5.95 (0.95), 2.36 (0.10)

MN1 LS 35.91 (0.99), 1.44 (0.09) 9.39 (0.65), 2.05 (0.09) 1.69 (0.36), 2.55 (0.09)
QR(0.50) 41.13 (1.81), 0.87 (0.06) 1.11 (0.11), 1.77 (0.08) 2.80 (0.49), 1.47 (0.07)
QR(0.75) 34.83 (1.12), 1.05 (0.07) 2.22 (0.18), 2.09 (0.08) 4.27 (0.48), 1.89 (0.09)

MN2 LS 31.06 (0.81), 3.27 (0.10) 16.10 (0.71), 3.74 (0.10) 9.30 (0.99), 4.12 (0.10)
QR(0.50) 32.37 (1.56), 3.09 (0.10) 5.61 (0.25), 4.36 (0.09) 7.15 (0.72), 4.08 (0.10)
QR(0.75) 30.37 (1.14), 3.90 (0.10) 6.10 (0.22), 4.95 (0.09) 7.75 (0.40), 4.66 (0.11)

Laplace LS 34.77 (0.90), 0.89 (0.05) 6.60 (0.72), 1.55 (0.07) 0.85 (0.13), 2.12 (0.08)
QR(0.50) 35.76 (1.28), 0.77 (0.06) 1.04 (0.10), 1.68 (0.07) 2.86 (0.53), 1.39 (0.07)
QR(0.75) 33.92 (1.22), 1.19 (0.07) 1.97 (0.16), 2.32 (0.09) 3.80 (0.47), 1.88 (0.08)√

2× t4 LS 34.02 (1.01), 1.64 (0.08) 10.81 (0.89), 2.17 (0.09) 1.78 (0.27), 3.10 (0.09)
QR(0.50) 38.86 (1.61), 1.71 (0.10) 2.80 (0.18), 2.81 (0.08) 4.09 (0.55), 2.50 (0.08)
QR(0.75) 34.06 (1.29), 2.09 (0.10) 3.59 (0.21), 3.10 (0.08) 5.95 (0.71), 2.90 (0.09)

Cauchy LS 17.01 (2.41), 6.61 (0.08) 16.47 (2.97), 6.62 (0.08) 55.88 (5.62), 6.22 (0.10)
QR(0.50) 40.24 (2.29), 1.54 (0.09) 3.05 (0.30), 2.65 (0.09) 7.41 (3.33), 2.52 (0.10)
QR(0.75) 41.00 (4.63), 2.97 (0.11) 5.09 (0.23), 4.05 (0.10) 10.78 (2.95), 3.74 (0.09)
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relevant to TRIM32. Specifically, we first analyze the data on all 120 rats using the lasso penalized

quantile regression with quantile indices τ = 0.25, 0.50 and 0.75. The tuning parameter is selected

using five-fold cross-validation. The number of relevant genes that are selected is reported in the

second column of Table 10. The difference in the number of selected genes by different quantile

indices is a sign of heteroscedasticity in the data, as explained in Wang et al. (2012). We then

conduct 50 random partitions on the data. Each partition has 80 rats in the training set and 40

rats in the validation set. We apply the lasso penalized quantile regression to the training set

using five-fold cross-validation and evaluate its prediction error on the validation set by calculating

(1/40)∑i∈validation ρτ(yi− β̂0−xT
i β̂ ). The average number of selected genes and prediction errors

over the 50 partitions are reported in the third and fourth columns of Table 10. We observe that

the genes selected by τ = 0.25 and 0.75 are fewer than those by τ = 0.5. This agrees with the

observation we made from the fit on the full data.

Table 9: Timings (in seconds) for running lasso penalized quantile regression (with τ = 0.25, 0.50 and 0.75) on the
microarray data reported in Scheetz et al. (2006) over one hundred λ values by quantreg (5000+: above 5000

seconds), scdADMM, pADMM and hqreg. All timings reported are averaged over three runs.

τ 0.25 0.50 0.75

quantreg 5000+ 5000+ 5000+
hqreg 4.97 4.09 4.56
pADMM 351.93 401.76 347.89
scdADMM 1.68 1.15 1.09

Table 10: Analysis of the microarray data reported in Scheetz et al. (2006) by lasso penalized quantile regression with
the FHDQR package. The number of genes selected and prediction errors are averaged over 50 runs for the random

partition columns. Numbers in the parentheses are standard errors of their corresponding averages.

All data Random partition

τ #genes Ave. #genes Prediction error

0.25 14 15.00 (1.26) 0.0351 (0.0014)
0.50 23 24.16 (2.38) 0.0395 (0.0010)
0.75 14 11.22 (1.07) 0.0671 (0.0196)
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5 Discussion

In this article, we proposed pADMM and scdADMM to solve the high-dimensional sparse penalized

quantile regression. The computational efficiency of our algorithms have been tested with extensive

numerical experiments. We note that both pADMM and scdADMM algorithms can be readily modi-

fied to solve the elastic net penalized quantile regression. Our R package FHDQR includes functions

for solving the weighted elastic net penalized quantile regression. We present the algorithmic details

of the weighted elastic net penalized quantile regression in the online supplementary materials.

Computational burden is a real issue that prevents the data analyst from using the high-

dimensional quantile regression as frequently as the sparse penalized least squares. Our algorithms

and R package drastically alleviate this burden and hence make sparse quantile regression a part of

the standard toolbox for data analysts.

Supplementary Materials

Proofs, algorithms, and illustration: This supplementary file provides the technical proofs of

Lemma 1 and Theorem 1, the pADMM and scdADMM algorithms for solving the elastic net

penalized quantile regression, and an illustrative comparison of the obtained optimal objective

function values by respectively quantreg, scdADMM, pADMM and hqreg. (PDF file)
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