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SUMMARY

When estimating the population mean of a response variable subject to ignorable missingness,
a new class of methods called the multiply robust procedures has been proposed. The advantage
of the multiply robust procedures over the traditional doubly robust methods is that the former
permit the use of multiple candidate models for both the propensity score and the outcome re- 15

gression, and the multiply robust estimators are consistent if any one of the multiple models
is correctly specified. Such a property is termed multiple robustness. Somewhat surprisingly,
we show that these multiply robust estimators are special cases of the doubly robust estimators
where the final propensity score and outcome regression models are certain combinations of the
candidate models. To further improve model specifications in the doubly robust estimators, we 20

adapt a model mixing procedure as an alternative method to combine multiple candidate models.
We show that the multiple robustness property and asymptotic normality can be also achieved by
our mixing-based doubly robust estimator. In addition, our estimator and the established theoret-
ical properties are not confined to parametric models. Numerical examples further demonstrate
that our proposed estimator is comparable to or outperforms existing multiply robust estimators. 25

Some key words: Double robustness; Ignorable missingness; Model mixing; Multiple robustness.

1. INTRODUCTION

The missing data problem is commonly encountered in biomedical and socioeconomic studies.
Missing data can arise when patients fail to visit their physicians for an annual checkup, when
respondents refuse to answer private survey questions, or when data is damaged. In this paper, we 30

focus on the missingness of response data and our parameter of interest is the population mean
of the response variable. Additionally, we assume the missingness mechanism is ignorable, i.e.,
the missingness can be fully accounted for by observed information (Little & Rubin, 2002).

Various methods have been proposed to estimate the population mean of a response subject
to ignorable missingness. Amongst them, two commonly used methods are inverse probability 35

weighting estimation (Horvitz & Thompson, 1952; Rosenbaum & Rubin, 1983; Robins et al.,
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1994) and outcome regression estimation. These two methods model the missingness mecha-
nism, also known as the propensity score, and the outcome, respectively, and provide consistent
estimation only if the corresponding model is correctly specified.

Over the past two decades, doubly robust procedures have gained popularity due to their pro-40

tection against model misspecification (Robins et al., 1994, 1995; Scharfstein et al., 1999; Bang
& Robins, 2005; Tan, 2007, 2010; Tsiatis, 2006; van der Laan & Gruber, 2010; Kang & Schafer,
2007; Qin et al., 2008; Tsiatis et al., 2011; Rotnitzky et al., 2012). Robins et al. (1994, 1995) pro-
posed augmented estimating equations to construct the doubly robust estimator. A nice feature
of such an estimator is that it involves one propensity score and one outcome regression mod-45

el, and provides consistent estimation of the population mean of the response when either the
propensity score or the outcome regression is correctly specified but not necessarily both. Fur-
thermore, the augmented estimator achieves semiparametric efficiency in the joint space of both
propensity score and outcome regression models being correctly specified. Robins (2000, 2002),
van der Laan & Robins (2003), and Kang & Schafer (2007) proposed a number of alternative50

doubly robust estimators. Those doubly robust estimators have different finite sample properties
but they all achieve semiparametric efficiency when the parameter of interest is the population
mean of a response variable.

Recently, multiply robust estimators have been proposed to gain additional protection against
model misspecification (Han & Wang, 2013; Han, 2014a,b; Chan & Yam, 2014; Chan, 2013;55

Han, 2016; Duan, 2017; Chen & Haziza, 2017). In contrast to the doubly robust estimator which
includes just one propensity score and one outcome regression model, Han & Wang (2013) pro-
posed a weighting-based multiply robust estimator that includes multiple propensity score and
outcome regression models. The motivation is that, with an unknown data-generating process,
there is no guarantee that either of the two models in the doubly robust estimator is correctly60

specified. They showed that the proposed estimator has the multiple robustness property which
guarantees estimation consistency if any one of the candidate models for the propensity score
or outcome regression is correctly specified. To overcome the computational challenges such
as multiple roots and nonconvergence of the weighting-based multiply robust estimator, Han
(2014a,b) redefined the estimator through a convex minimization problem. Chan & Yam (2014)65

generalized the weighting method in Han & Wang (2013) and considered calibration weighting
using generalized empirical likelihood. Chan (2013) proposed an outcome regression-based mul-
tiply robust estimator where the inverse of the estimated propensity scores are used as covariates
in the outcome regression model.

In this paper, we demonstrate that the aforementioned multiply robust estimators are special70

cases of doubly robust estimators where the final propensity score and outcome regression mod-
els are combinations of those multiple candidate models. The intuition is straightforward: for
ignorable missingness data, the likelihood function factorizes as the product of two variation-
independent factors where one corresponds to the propensity score and the other corresponds
to the outcome regression. The parameter of interest, as a function of the likelihood, can thus75

be viewed as a function of the above two likelihood factors. Hence, for both doubly and mul-
tiply robust estimators, the propensity score and outcome regression are the only two parts in
the likelihood that are modeled, irrespective of whether each part is constructed from a single
model or a combination of a variety of candidate models. Additionally, the multiple robustness
property is based on the double robustness property. The final propensity score and outcome80

regression models are constructed such that when any of the multiple candidate models are cor-
rectly specified, at least one of the estimated final models is consistent for the corresponding true
model. Along these lines, we adapt the model mixing procedures (Yang, 2000, 2001) to assem-
ble multiple candidate models, so as to improve model specifications for both propensity score
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and outcome regression in doubly robust estimators. We show that, theoretically, the improved 85

doubly robust estimators also possess the multiple robustness property, and empirically, these
doubly robust estimators can rival or outperform the aforementioned multiply robust estimators.

2. PRELIMINARIES

LetX ∈ Rd denote the fully observed covariates and let Y be the response variable that is sub-
ject to missingness. Let R denote the missingness indicator, that is, R = 1 if Y is observed and 90

R = 0 if otherwise. We use lower case letters to denote realizations of these random variables.
For example, x denotes any possible value that X could take. Suppose we observe n indepen-
dent and identically distributed copies of (R,RY,X). Without loss of generality, we assume Y
is observed in the first m out of a total of n observations. Let π(x) = pr(R = 1|X = x) and
a(x) = E(Y |X = x) denote the propensity score and outcome regression models, respectively. 95

The parameter of interest is the population mean of the response, i.e., µ = E(Y ). Throughout the
paper, we use Pn(U) =

∑n
i=1 Ui/n to denote the empirical mean of a generic random variable

U . We make the following assumptions.

Assumption 1. Ignorability: R⊥⊥ Y |X .

Assumption 2. Positivity: π(x) = pr(R = 1|X = x) ≥ πmin > 0 for all x and some πmin. 100

Assumption 1 requires that, given observed covariates, the missingness indicator is indepen-
dent of the response variable. Such an assumption requires the collection of all relevant covari-
ates. Assumption 2 requires that, for every individual, the missingness of the outcome is not
deterministic, i.e., there is a positive chance of observing the outcome. This condition is need-
ed to recover the missing information from the observed data. Both assumptions are frequently 105

made in the missing data literature.
When π(x) is consistently estimated by π̂(x), the inverse probability weighting estima-

tor µ̂ipw = Pn{RY/π̂(X)} is consistent for µ. Otherwise, µ̂ipw is inconsistent. Similarly, the
outcome regression estimator µ̂reg = Pn{â(X)} is consistent for µ if â(x) consistently esti-
mates a(x). Otherwise, µ̂reg is inconsistent. To overcome the vulnerability of model misspec- 110

ification in both µ̂ipw and µ̂reg, the augmented inverse probability weighted estimator µ̂aipw =
Pn[RY/π̂(X) + {1−R/π̂(X)}â(X)] uses the outcome regression model as an augmentation
term to the inverse probability weighting method. When the propensity score model π(x) is
consistently estimated, the first term in µ̂aipw is consistent for µ and the second term converges
to zero in probability so that the summation is consistent for µ. When π(x) is not consistent- 115

ly estimated but the outcome regression model a(x) is, the first term is biased but the second
term consistently estimates the bias of the first term so the summation is again consistent for
µ. Hence, µ̂aipw is doubly robust. The propensity score and outcome regression in the augment-
ed inverse probability weighted estimator can be estimated using parametric, semiparametric or
nonparametric models. 120

Apart from the augmented inverse probability weighted estimator, various doubly robust es-
timators have been proposed including the weighting-based and regression-based doubly ro-
bust estimators. Let π̃(x; δ) and ã(x;ψ) denote some generic parametric propensity score and
outcome regression models. Based on µ̂ipw, Rotnitzky & Robins (1995) proposed the weighting-
based doubly robust estimator. Recall that the parametric inverse probability weighting estimator 125

is µ̂ipw = Pn{RY/π̃(X; δ̂)}, where δ̂ can be obtained by solving the estimating equation

Pn
[{

R

π̃(X; δ)
− 1

}
t(X)

]
= 0, (1)
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and t(x) is a user-specified vector-valued function with dimension no less than that of δ. When
one of the components in t(x) is ã(x; ψ̂), where ã(x; ψ̂) consistently estimates a(x), the in-
verse probability weighting estimator µ̂ipw is consistent for µ even when the propensity score
model is misspecified (Rotnitzky & Robins, 1995). We denote this weighting-based doubly ro-130

bust estimator by µ̂dr–ipw. Under (1), µ̂dr–ipw can be written as µ̂dr–ipw = Pn{RY/π̃(X; δ̂)} =

Pn[RY/π̃(X; δ̂) + {1−R/π̃(X; δ̂)}ã(X; ψ̂)], i.e., µ̂dr–ipw is in the form of an augmented in-
verse probability weighted estimator. Hence, it shares the double robustness property. More gen-
erally, if the linear space spanned by t(x) contains ã(x; ψ̂), then the double robustness property of
µ̂dr–ipw still holds. For notational convenience, we use µ̂dr–ipw to denote all such weighting-based135

doubly robust estimators. Thus, if there exists a constant vector ξ such that ã(x; ψ̂) = ξTt(x),
then µ̂dr–ipw = Pn{RY/π̃(X; δ̂)} with δ̂ obtained from (1), is consistent for µ if either π̃(x; δ̂)
consistently estimates π(x) or t(x) includes consistent estimator(s) of a(x) up to a linear com-
bination.

Another doubly robust estimator based on µ̂reg is proposed by Scharfstein et al. (1999).140

Also, see Bang & Robins (2005). Scharfstein et al. (1999) showed that to obtain a doubly
robust estimator, it suffices to model the outcome regression as ã(x;ψ) = b{ζ(x;ψ1) + ψ2 ·
1/π̃(x; δ̂)}, where ψ = (ψT

1 , ψ2)
T, b(·) is a link function, ζ(x;ψ1) is a known function of

x with parameter ψ1, and 1/π̃(x; δ̂) denotes the inverse of the estimated propensity score.
They then defined the regression-based doubly robust estimator as µ̂dr–reg = Pn{ã(X; ψ̂)},145

where ψ̂ is obtained by solving Pn[R{Y − ã(X;ψ)}{q(X)T, 1/π̃(X; δ̂)}T] = 0, and q(x) is
a user-specified vector-valued function with dimension no less than that of ψ1. Under the
above constraint, µ̂dr–reg can be rewritten as µ̂dr–reg = Pn{ã(X; ψ̂)} = Pn[ã(X; ψ̂) +R{Y −
ã(X; ψ̂)}/π̃(X; δ̂)] = Pn[RY/π̃(X; δ̂) + {1−R/π̃(X; δ̂)}ã(X; ψ̂)], that is, µ̂dr–reg is in the
form of an augmented inverse probability weighted estimator. Based on a similar argumen-150

t which shows the consistency of µ̂aipw, we can also establish the double robustness prop-
erty of µ̂dr–reg if either π̃(x; δ) or ã(x;ψ) is correctly specified. More generally, one could
include in the outcome regression model a vector-valued function l(x), that is, one can set
ã(x;ψ) = b{ζ(x;ψ1) + ψT

2 l(x)} and solve ψ = (ψT
1 , ψ

T
2 )T from the estimating equation

Pn
[
R{Y − ã(X;ψ)}{q(X)T, l(X)T}T

]
= 0. (2)

If the linear space spanned by l(x) contains the inverse of the correctly specified propensity155

score estimate 1/π̃(x; δ̂), then following the same argument as above, we can also show that the
corresponding estimator achieves the double robustness property.

3. MULTIPLY ROBUST ESTIMATORS AS SPECIAL CASES OF DOUBLY ROBUST
ESTIMATORS

3·1. Demystifying weighting-based multiply robust estimator160

To provide additional protection against model misspecification, Han & Wang (2013), Chan
& Yam (2014) and Chan (2013) postulated multiple candidate parametric models for the propen-
sity score and outcome regression and proposed different versions of multiply robust estimators
of µ. Interestingly, we show that these estimators can be written as special cases of doubly ro-
bust estimators. Furthermore, the multiple robustness property is actually a result of the double165

robustness property.
Han & Wang (2013) postulated multiple candidate parametric models P = {πj(x;αj) : j =

1, . . . , J} for π(x) and multiple candidate parametric models A = {ak(x; γk) : k = 1, . . . ,K}
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for a(x), where αj and γk are the parameters in the jth propensity score and kth outcome regres-
sion models, respectively. Let α̂j and γ̂k denote the estimates of αj and γk, respectively. Han & 170

Wang (2013) proposed to estimate µ via a weighted average of the responses
∑m

i=1 ω̂iYi, where
the following constraints are imposed on the weights ω̂i (i = 1, · · · ,m):

Pn{nRω} = 1, Pn{nRωπj(X; α̂j)} = Pn{πj(X; α̂j)} (j = 1, . . . , J),

Pn{nRωak(X; γ̂k)} = Pn{ak(X; γ̂k)} (k = 1, . . . ,K).
(3)

To give an explicit form of the estimates ω̂i’s, let αT = {(α1)T, . . . , (αJ)T}, γT =
{(γ1)T, . . . , (γK)T}, and denote the estimates of α and γ by α̂ and γ̂, respectively. More- 175

over, let g(x; α̂, γ̂) = {π1(x; α̂1)− θ̂1, . . . , πJ(x; α̂J)− θ̂J , a1(x; γ̂1)− η̂1, . . . , aK(x; γ̂K)−
η̂K}T, where θ̂j = Pn{πj(X; α̂j)} and η̂k = Pn{ak(X; γ̂k)}. Han & Wang (2013) gave the es-
timated weights as

ω̂i =
1

m

1

1 + ρ̂Tg(Xi; α̂, γ̂)

/{ 1

m

m∑
i=1

1

1 + ρ̂Tg(Xi; α̂, γ̂)

}
(i = 1, . . . ,m), (4)

where ρ̂ is the estimate of a (J +K)-dimensional parameter satisfying

m∑
i=1

g(Xi; α̂, γ̂)

1 + ρ̂Tg(Xi; α̂, γ̂)
= 0. (5)

To facilitate numerical computation and guarantee uniqueness of ρ̂, Han (2014a,b) further im- 180

posed the condition 1 + ρTg(Xi; α̂, γ̂) > 0 for i = 1, · · · ,m, and solved ρ from the minimiza-
tion of a convex function F (ρ) = −Pn[R log{1 + ρTg(X; α̂, γ̂)}]. We denote the weighting-
based multiply robust estimator by µ̂mr–ipw :=

∑m
i=1 ω̂iYi.

In the sequel, we show that µ̂mr–ipw can be written as the weighting-based doubly robust
estimator µ̂dr–ipw with a specific propensity score model π̃(x; δ), where δ can be estimat- 185

ed from (1) with a specific choice of t(x). We rewrite the second and third constraints in
(3) as Pn[{nRω − 1}hs(X; α̂, γ̂)] = 0, where hs(x; α̂, γ̂) = πs(x; α̂s) for s = 1, . . . , J and
hs(x; α̂, γ̂) = as−J(x; γ̂s−J) for s = J + 1, . . . , J +K. Comparing estimator µ̂mr–ipw with
µ̂dr–ipw, and the constraint rewritten above with (1), we set

π̃(x; δ) =

{
1

n

n∑
i=1

Ri
1 + δTg(Xi; α̂, γ̂)

}
{1 + δTg(x; α̂, γ̂)}, (6)

where δ is estimated from 190

Pn
[{

R

π̃(X; δ)
− 1

}
hs(X; α̂, γ̂)

]
= 0 (s = 1, . . . , J +K). (7)

A comparison between (1) and (7) reveals that (7) is a special case of (1), where the base function
t(x) is chosen as

t(x) = {π1(x; α̂1), . . . , πJ(x; α̂J), a1(x; γ̂1), . . . , aK(x; γ̂K)}T. (8)

Consequently, a similar constraint on δ as that in (5) for ρ can be derived from (7). See
the supplementary material for details. If we further assume that 1 + δTg(Xi; α̂, γ̂) > 0 for
i = 1, · · · ,m, then we can also obtain a unique δ̂ satisfying (7) and we have δ̂ = ρ̂. Additionally, 195
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for i = 1, . . . ,m, we have

π̃(Xi; δ̂) =
1

n

{ m∑
i=1

1

1 + δ̂Tg(Xi; α̂, γ̂)

}
{1 + δ̂Tg(Xi; α̂, γ̂)} =

1

nω̂i
.

This implies that µ̂mr–ipw =
∑m

i=1 ω̂iYi =
∑m

i=1 Yi/{nπ̃(Xi; δ̂)} = Pn{RY/π̃(X; δ̂)} =
µ̂dr–ipw. Thus, the multiply robust estimator µ̂mr–ipw can be written as a doubly robust estimator
µ̂dr–ipw, where the form of the final propensity score π̃(x; δ) is given in (6) and δ is estimated
from (7).200

Now we show that the multiple robustness property of µ̂mr–ipw is actually a result of the dou-
ble robustness property of µ̂dr–ipw. Specifically, the multiple robustness property of µ̂mr–ipw is
achieved by the construction of a final propensity score model and a final outcome regression
model in µ̂dr–ipw through (6)–(7). Recall that µ̂dr–ipw is consistent if the outcome regression mod-
el is correctly specified up to a linear combination of t(x). Such a property has the potential to205

achieve multiple robustness with multiple outcome regression models. However, this has never
been fully leveraged until Han & Wang (2013). Furthermore, they proposed a new way to gain
multiple robustness with multiple candidate propensity score models. The empirical likelihood
methodology they considered motivated us to construct a special propensity score model in (6).
As we show below, such a construction makes at least one of the two final models consistent210

when any of the multiple candidate models is correctly specified.
Indeed, if one of the K candidate models for the outcome is correctly specified, then the

span of t(x) in (8) contains the correct model, and additionally, the estimator µ̂dr–ipw, and
consequently µ̂mr–ipw are both consistent. Otherwise, it suffices to show that when one of the
J candidate models for the propensity score is correctly specified, π̃(x; δ̂) is consistent for215

the true propensity score, and hence the estimator µ̂mr–ipw is also consistent. Without loss of
generality, assume π1(x;α1) is correctly specified, i.e., π(x) = π1(x;α0) for some α0. Let
θ1 = E{π1(X;α0)}. Following a similar derivation in Han & Wang (2013) and Han (2014a,b),
one has δ̂ −→ (1/θ1, 0, . . . , 0)T in probability as n −→∞. Thus, we have

π̃(x; δ̂) =

{
1

n

n∑
i=1

Ri

1 + δ̂Tg(Xi; α̂, γ̂)

}
{1 + δ̂Tg(x; α̂, γ̂)}

−→ E

[
R

1 + {π1(X;α0)− θ1}/θ1

]
[1 + {π1(x;α0)− θ1}/θ1]

= θ1[1 + {π1(x;α0)− θ1}/θ1] = π1(x;α0),

which holds in probability. Therefore, we have demonstrated that the weighting-based multiply220

robust estimator is indeed a special case of the doubly robust estimator.

3·2. Demystifying other multiply robust estimators
The calibration weighted multiply robust estimator, proposed by Chan & Yam (2014), aims to

overcome the difficulty in numerical computation of the weighting-based multiply robust esti-
mator by Han & Wang (2013). Let µ̂mr–cal denote the calibration-based multiply robust estimator.225

Following arguments similar to those in Section 3·1, µ̂mr–cal can be also interpreted as a special
case of the doubly robust estimator.

Chan (2013) proposed a regression-based multiply robust estimator as an alternative esti-
mator of µ. They fit a linear regression in which the response Y is regressed on the pre-
dictors u(X; α̂, γ̂) = {1, a1(X; γ̂1), . . . , aK(X; γ̂K), 1/π1(X; α̂1), . . . , 1/πJ(X; α̂1)}T using230

the complete-case subsample. The regression-based estimator was then defined as µ̂mr–reg =
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Pn{u(X; α̂, γ̂)Tβ̂}, where β̂ is the least squares estimator from the linear regression, β̂ =
{U(X; α̂, γ̂)TU(X; α̂, γ̂)}−1U(X; α̂, γ̂)TYobs, where Yobs = (Y1, . . . , Ym)T and U(X; α̂, γ̂) =
{u(X1; α̂, γ̂), . . . , u(Xm; α̂, γ̂)}T.

We show that µ̂mr–reg can be expressed as a form of the outcome regression-based doubly 235

robust estimator µ̂dr–reg. For ease of notation, let u1(x; γ̂) = {1, a1(x; γ̂1), . . . , aK(x; γ̂K)}T,
u2(x; α̂) = {1/π1(X; α̂1), . . . , 1/πJ(X; α̂1)}T, and u(x; α̂, γ̂) = {u1(x; γ̂)T, u2(x; α̂)T}T. Re-
call that µ̂dr–reg = Pn{ã(X; ψ̂)} = Pn[b{ζ(X; ψ̂1) + ψ̂T

2 l(X)}], where ψ̂ is estimated from esti-
mating equation (2). If we specify in (2), b(·) to be the identity link, q(x) = u1(x; γ̂), ζ(x;ψ1) =

u1(x; γ̂)Tψ1, and l(x) = u2(x; α̂), then the estimator ψ̂ obtained from (2) coincides with the 240

least square estimator β̂, i.e., (ψ̂T
1 , ψ̂

T
2 )T = β̂. Consequently, µ̂mr–reg = Pn{u(X; α̂, γ̂)Tβ̂} =

Pn{u1(X; γ̂)Tψ̂1 + u2(X; α̂)Tψ̂2} = Pn{ζ(X; ψ̂1) + ψ̂T
2 l(X)} = µ̂dr–reg.

Similar to the weighting-based doubly robust estimator, µ̂dr–reg is also equipped with the mul-
tiple robustness property with multiple candidate propensity models. If one of the J candidate
propensity score models is correctly specified, then the span of l(x) contains the correct model, 245

and additionally, according to the discussions below (2), the estimator µ̂dr–reg and consequent-
ly µ̂mr–reg are both consistent. Otherwise, it suffices to show that when one of the K outcome
regression models is correctly specified, ã(x; ψ̂) is consistent for the true outcome regression.
Without loss of generality, assume a1(x; γ1) is correctly specified, i.e., a1(x; γ̂1) is a consis-
tent estimator of a(x). Note that a1(x; γ̂1) = ζ(x;ψ∗1) + ψ∗2

Tl(x), where ψ∗1 = (0, 1, 0, . . . , 0)T 250

and ψ∗2 = (0, . . . , 0)T. The estimators (ψ̂T
1 , ψ̂

T
2 ) in ã(x; ψ̂) converges to (ψ∗1

T, ψ∗2
T) in prob-

ability under constraint (2) with the pre-specified q(x) and l(x). This implies that ã(x; ψ̂) =

ζ(x; ψ̂1) + ψ̂T
2 l(x) converges in probability to the limit of a1(x; γ̂1), i.e., ã(x; ψ̂) consistent-

ly estimates a(x). Therefore, the regression-based multiply robust estimator µ̂mr–reg is indeed a
special case of the doubly robust estimator µ̂dr–reg by appropriately combining the multiple can- 255

didate models to obtain an estimate of the inverse of the final propensity score π̃(x; δ) through a
linear span of l(x), and an estimate of the final outcome regression ã(x;ψ).

4. ALTERNATIVE METHOD TO IMPROVE MODEL SPECIFICATION

As shown above, the multiple robustness property of existing multiply robust estimators results
from the double robustness property through a specific combination of the multiple candidate 260

models. This enlightens us to explore alternative ways to construct from these candidates a final
propensity score and a final outcome regression for the improved doubly robust estimator so that
it also possesses the multiple robustness property.

Yang (2000) and Yang (2001) proposed the adaptive classification/regression by mixing pro-
cedures for binary/continuous outcomes. Compared to other ensemble methods, a distinctive 265

feature of such model mixing procedures is that the squared L2 risks of the mixing estimators
of the propensity score and outcome regression are almost as small as those of the best can-
didate estimators. This adaptation is achieved through a weighting scheme that exploits proper
cumulative metrics, e.g., the cumulative predictive likelihood, to assess the performance of all
candidates at each stage of the procedure. In what follows, we investigate the risk bounds of 270

the final propensity score and outcome regression estimates using the mixing procedures as a
foundation for developing the theoretical properties of our improved doubly robust estimator.

Let πj(x) denote the jth candidate propensity score model and ak(x) denote the kth can-
didate outcome regression model, where j ∈ J = {1, · · · , J} and k ∈ K = {1, · · · ,K}. Let
Z denote the random triplet (R,RY,X). Let π̂ji (x) and âki (x) be the estimates of πj(x) and 275
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ak(x), respectively, by fitting the corresponding candidate models on the first i observations
Zi = (Rl, RlYl, Xl)

i
l=1, where i = 1, . . . , n, j ∈ J and k ∈ K. The candidate models are al-

lowed to be either parametric, semiparametric, or nonparametric.
In the mixing procedure for the propensity score model, we start by randomly partitioning the

full data into two parts. Without loss of generality, we denote them by Z(1) = (Ri, RiYi, Xi)
Nn
i=1280

and Z(2) = (Ri, RiYi, Xi)
n
i=Nn+1, respectively, whereNn = max(1, bcnc) for some 0 < c < 1.

In practice, one can take, e.g., Nn = bn/2c. Next, we fit each candidate propensity score model
on the training set Z(1) and calculate its predictive risk, based on the Bernoulli likelihood, using
each observation in Z(2). The weights for the candidate models are obtained by accumulating the
predictive likelihood on Z(2) in the manner of Λ̂j = (n−Nn)−1

∑n
i=Nn+1 Λ̂j,i, j ∈ J , where285

Λ̂j,Nn+1 = 1/J ,

Λ̂j,i =

∏i−1
l=Nn+1 π̂

j
Nn

(Xl)
Rl
{

1− π̂jNn
(Xl)

}1−Rl∑
j′∈J

∏i−1
l=Nn+1 π̂

j′

Nn
(Xl)Rl

{
1− π̂j

′

Nn
(Xl)

}1−Rl
(Nn + 2 ≤ i ≤ n). (9)

Here, the weights Λ̂j,i are adapted from Yang (2000). These weights satisfy Λ̂j ≥ 0 and∑
j∈J Λ̂j = 1. The final mixing estimator of the propensity score, π̂mix, is a weighted average of

the candidate estimators, i.e., π̂mix(x) =
∑

j∈J Λ̂j π̂
j
Nn

(x). We summarize the mixing procedure
for the final propensity score model in Algorithm 1.290

Algorithm 1. Mixing procedure for the final propensity score model.

(1) Randomly partition the full data Zn into two parts Z(1) = (Ri, RiYi, Xi)
Nn
i=1 and

Z(2) = (Ri, RiYi, Xi)
n
i=Nn+1, where Nn = max(1, bcnc) for some 0 < c < 1.

(2) Fit the candidate propensity score models to the subsample Z(1) to obtain the estimates
π̂jNn

(x), j ∈ J .
(3) Calculate weights Λ̂j = (n−Nn)−1

∑n
i=Nn+1 Λ̂j,i, where Λ̂j,i is defined in (9).

(4) Return the mixing estimator for the propensity score π̂mix(x) =
∑

j∈J Λ̂j π̂
j
Nn

(x).

The following lemma shows that under mild conditions, the squared L2 risk of π̂mix(x) is
bounded from above by the smallest risk of all candidates plus a small remainder term, where
the remainder term typically vanishes at a rate no slower than the risk itself. We define the L2

norm of a generic function f with respect to the distribution ν of X by ‖f‖2 =
∫
f2(x)ν(dx).295

LEMMA 1. Suppose for each j ∈ J , there exists a constant Aj with 0 < Aj < 1/2, such that
Aj ≤ π̂jNn

(x) ≤ 1−Aj for all x. Then

E
(
‖π̂mix − π‖2

)
≤ inf

j∈J

2

A2
j

E
(
‖π̂jNn

− π‖2
)

+
2 log(J)

n−Nn
.

The remainder term, 2 log(J)/(n−Nn), vanishes at the rate 1/(n−Nn) or 1/n. This is
typically faster than the convergence rate of infj∈J E(‖π̂jNn

− π‖2) when the candidate models
are nonparametric. If one of the candidate models is parametric and it is the model that correctly300

specifies π(x), then infj∈J E(‖π̂jNn
− π‖2) converges at rate 1/n. Therefore, the remainder

term is negligible in terms of convergence rate compared to the statistical risks of the candidate
models themselves.

Under ignorable missingness, a(x) = E(Y | X,R = 1), and hence one can similarly obtain
the mixing procedure for a binary outcome, except that only the complete-case subsample can305
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be used for fitting the candidate models. In the mixing procedure for a continuous outcome, a
different criterion must be used to calculate the weights. Recall that the firstm cases are assumed
to be completely observed. We randomly partition Zm into two parts Z(3) = (Ri, RiYi, Xi)

Nm
i=1

and Z(4) = (Ri, RiYi, Xi)
m
i=Nm+1, where Nm = max(1, bcmc) for some c ∈ (0, 1). For exam-

ple, one can take Nm = bm/2c. After fitting the candidate models on Z(3), we calculate the 310

weights Ω̂k = (m−Nm)−1
∑m

i=Nm+1 Ω̂k,i, where Ω̂k,Nm+1 = 1/K and

Ω̂k,i =
exp
[
−λ
∑i−1

l=Nm+1{Yl − âkNm
(Xl)}2

]∑
k′∈K exp

[
−λ
∑i−1

l=Nm+1{Yl − âk
′
Nm

(Xl)}2
] (Nm + 2 ≤ i ≤ m), (10)

for k ∈ K. As with Λ̂j,i in the mixing procedure for the final propensity score model, the weights
Ω̂k,i are modified from Yang (2004) to work for our specific situations. The mixing estimator of
the outcome regression is then âmix(x) =

∑
k∈K Ω̂kâ

k
Nn

(x). The calculation of the weights here
is based on exponential weighting of the cumulative predictive risks under the mean squared 315

error of the candidate models. The parameter λ in (10) is a properly chosen positive constant that
controls the effect of the performance of the candidate models on the weights. We recommend
the use of cross-validation for the selection of λ in practice. See more discussions about this in
Yang (2004) and Gu & Zou (2019). We summarize the mixing procedure for the final outcome
model in Algorithm 2. 320

Algorithm 2. Mixing procedure for the final outcome regression model.

(1) Randomly partition the complete-case data Zm into two parts Z(3) = (Ri, RiYi, Xi)
Nm
i=1

and Z(4) = (Ri, RiYi, Xi)
m
i=Nm+1, where Nm = max(1, bcmc) for some c ∈ (0, 1).

(2) Fit the candidate outcome regression models to the subsample Z(3) to obtain the
estimates âkNm

(x), k ∈ K.
(3) Calculate weights Ω̂k = (m−Nm)−1

∑m
i=Nm+1 Ω̂k,i, where Ω̂k,i is defined in (10).

(4) Return the mixing estimator of the outcome regression âmix(x) =
∑

k∈K Ω̂kâ
k
Nm

(x).

The L2 risk of âmix(x) is derived in the following lemma. Similar to the mixing estimator of
the propensity score, the mixing estimator of the outcome regression is also bounded from above
by the smallest risk of all candidates plus a small remainder term. To see this, we define the
sub-exponential norm of a generic random variable U by supτ≥1 τ

−1{E(|U |τ )}1/τ . If this norm
is finite, then U is called a sub-exponential random variable (Vershynin, 2010). 325

LEMMA 2. Suppose there exist constants C1, C2 > 0 such that supk∈K |âkNm
(x)− a(x)| ≤

C1 for all x and the sub-exponential norm of Y − a(x) given X = x is bounded by C2 from
above for all x. Then

E
(
‖âmix − a‖2

)
≤ inf

k∈K
E
(
‖âkNm

− a‖2
)

+
log(K)

λ(m−Nm)
,

for

0 < λ ≤ max

[
1

16eC1C2
,

exp{C1(8eC2)
−1}

4M2{(4eC2)−1}+ 16C2
1M0{(4eC2)−1}

]
,

whereM0(t) = 2 exp(2e2C2
2 t

2),M2(t) = 16
√

2C2
2 exp(8e4C2

2 t
2) and e = exp(1). 330
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We now establish the theoretical properties for our proposed mixing-based doubly robust es-
timator µ̂mix = Pn[RY/π̂mix(X) + {1−R/π̂mix(X)}âmix(X)]. For j ∈ J , let π̄j(x) be some
non-stochastic function to which π̂jNn

(x) converges in the sense that ‖π̂jNn
− π̄j‖ = op(1).

Similarly, assume ‖âkNm
− āk‖ = op(1) for some non-stochastic function āk(x), where k ∈ K.

In what follows, we assume m = Θ(n), i.e., there exist constants 0 < c0 < c1 < 1 such that335

c0 ≤ m/n ≤ c1 for any m,n.

THEOREM 1. Suppose the conditions in Lemmas 1 and 2 hold. If (1) π̄j = π for some j ∈ J ,
or (2) āk = a for some k ∈ K, then µ̂mix is a consistent estimator of µ as n→∞.

Theorem 1 indicates that if one of the propensity score or one of the outcome regression
candidate models is correctly specified and consistently estimated, the proposed estimator µ̂mix340

is consistent for the true parameter µ. Hence, the multiple robustness property is achieved by our
improved doubly robust estimator µ̂mix that utilizes the mixing propensity score and outcome
regression models.

THEOREM 2. Suppose the conditions in Lemmas 1 and 2 hold. We also assume that 1/π̄j(x),
âkNm

(x) and āk(x) are uniformly bounded for each j ∈ J and k ∈ K. If (1) π̄j = π for some345

j ∈ J , or (2) āk = a for some k ∈ K, then

|µ̂mix − µ| = Op
(
n−1/2 + ‖π̂mix − π‖‖âmix − a‖

)
.

Theorem 2 characterizes the rate of convergence of the proposed estimator µ̂mix when either
one of the propensity score or one of the outcome regression models is correctly specified. This
rate mainly depends on the order of the product of the convergence rates of π̂mix(x) and âmix(x).
When one of the propensity score models and one of the outcome models are correctly specified,350

we show that
√
n(µ̂mix − µ) converges to a normal distribution as n→∞ and µ̂mix achieves

semiparametric efficiency under some mild conditions.

THEOREM 3. Suppose the conditions in Theorem 2 hold. If for some j ∈ J and some k ∈ K,
(1) π̄j = π, (2) āk = a, and (3) ‖π̂jNn

− π‖‖âkNm
− a‖ = op(n

−1/2), then
√
n(µ̂mix − µ) con-

verges in distribution to N(0, σ2), where355

σ2 = E

{
var(Y | X)

π(X)

}
+ var{E(Y | X)}.

Therefore, µ̂mix attains the semiparametric efficiency bound.

Condition (3) in the above theorem is a mild requirement and can be satisfied under many
scenarios. For example, when πj(x) is a correctly specified parametric model for π(x), it follows
that ‖π̂jNn

− π‖ = Op(n
−1/2) under fairly common regularity conditions. Then condition (3)

is satisfied as long as âkNm
(x) is consistent for a(x), i.e., ‖âkNm

− a‖ = op(1), regardless of360

whether ak(x) is parametric or not. The same holds true when ak(x) is a correctly specified
parametric model for a(x) and we require minimal assumptions on πj(x). When πj(x) and ak(x)

are nonparametric, as long as both π̂jNn
(x) and âkNm

(x) converge faster than n−1/4, condition (3)
is satisfied. Theorem 3 also implies that µ̂mix is a regular estimator for µ, which is formally stated
in the following corollary.365

COROLLARY 1. Under the conditions of Theorem 3, µ̂mix is a regular asymptotic linear esti-
mator of µ.
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It is worth pointing out that our mixing-based doubly robust estimator µ̂mix and its at-
tached theoretical properties are not confined to parametric models. In addition, one can read-
ily utilize existing variable selection and regularization techniques, such as the lasso (Tibshi- 370

rani, 1996), adaptive lasso (Zou, 2006), elastic net (Zou & Hastie, 2005) and so on, to han-
dle a large number of predictors, or equivalently, candidate models with different subsets of
predictors. These methods guarantee consistent estimation and give reasonable rates of con-
vergence for the propensity score and outcome regression models under high dimensionali-
ty when certain sparsity structures are assumed for the true models. As a consequence, µ̂mix 375

remains multiply robust for high-dimensional data. For example, suppose that the estimators
π̂jNn

for some j ∈ J and âkNm
for some k ∈ K are obtained from lasso. Under some regu-

larity conditions, we have ‖π̂jNn
− π‖ = Op{(sπ log d/n)1/2} (Van de Geer et al., 2008) and

‖âkNm
− a‖ = Op{(sa log d/m)1/2} (Bickel et al., 2009), where sπ and sa denote the sparsity

levels of the true propensity score and outcome regression models, respectively. Hence, as long 380

as sπsa(log d)2/n = o(1), the results in Theorem 3 still hold. Although existing multiply robust
methods can be also applied to high-dimensional or nonparametric scenarios by adding a preced-
ing regularization procedure or including nonparametric models in the constraints, the theoretical
results for such cases may need to be further developed. Nevertheless, for fair comparison in the
simulation studies of Section 5, we also conducted variable selection procedures before applying 385

existing multiply robust methods.

5. SIMULATION STUDIES

In this section, we present simulation studies to investigate the finite sample performance of
our proposed estimator µ̂mix, and compare it with existing multiply robust estimators µ̂mr–ipw,
µ̂mr–cal, and µ̂mr–reg. 390

The simulation setting follows that in Kang & Schafer (2007). Sample sizes for each sim-
ulation scenario are 200 and 1000. For each simulation, the data are generated with X =
{X(1), . . . , X(4)} ∼ N4(0, I4), Y | X = x ∼ N{a(x), 1}, andR | X = x ∼ Ber{π(x)}, where
I4 is a 4× 4 identity matrix, π(x) = [1 + exp{x(1) − 0·5x(2) + 0·25x(3) + 0·1x(4)}]−1 and
a(x) = 210 + 27·4x(1) + 13·7x(2) + 13·7x(3) + 13·7x(4). The missing data proportion is about 395

50%. As with Kang & Schafer (2007), we calculate V (1) = exp{X(1)/2}, V (2) = X(2)/[1 +
exp{X(1)}] + 10, V (3) = {X(1)X(3)/25 + 0·6}3 and V (4) = {X(2) +X(4) + 20}2.

We consider four different scenarios: (i) one of the candidate propensity score models and one
of the candidate outcome regression models are correctly specified, (ii) only one of the candidate
outcome regression models is correctly specified, (iii) only one of the candidate propensity score 400

models is correctly specified, and (iv) none of the candidate models for propensity score or
outcome regression is correctly specified. The correctly specified propensity score and outcome
regression models are fitted by using X as covariates, whereas we treat V = {V (1), . . . , V (4)}
to be the covariates instead of X in the misspecified models.

We carry out the simulation for scenario (i) in the following steps: 405

Step 1. We simulate a random sample of n = 200 or n = 1000 observations according to the
Kang & Schafer (2007) setting.

Step 2. We choose the identity link function for the outcome model, and the commonly used
logit, probit, and complementary log-log link functions for the candidate propensity score mod-
els. We apply the elastic net to select variables separately within each given link function where 410

the predictors are composed of all first- and second-order interactions of the covariates X .
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Step 3. We then conduct the model mixing procedures using the candidate models obtained
under different link functions. We calculate µ̂mix based on the combined propensity score and
outcome regression models.

Step 4. For a fair comparison, we also use the selected models by elastic net from Step 2 as415

candidate propensity score and outcome regression models for µ̂mr–ipw, µ̂mr–cal and µ̂mr–reg. Since
µ̂mr–cal involves only one propensity score model, we choose the one picked by the elastic net
under the logit link. Based on the selected candidate models, µ̂mr–ipw, µ̂mr–cal, and µ̂mr–reg are then
calculated.

Step 5. We repeat Step 1–4 for 200 times.420

The simulation studies for other scenarios are conducted similarly except that the covari-
ates V are used in the misspecified models in Step 2. The results for all scenarios with sample
sizes n = 200 and n = 1000 are reported in Figure 1. In almost all the scenarios, our porposed
mixing-based doubly robust estimator µ̂mix has comparable bias and variance with the one that
achieves the best performance among those existing multiply robust estimators µ̂mr–ipw, µ̂mr–cal,425

and µ̂mr–reg. It is also observed that µ̂mr–reg performs slightly worse in some scenarios, compared
with the other estimators. As sample size increases, all estimators have smaller biases in scenar-
ios (i)—(iii), but no such trends are observed in scenario (iv). This is expected because only when
at least one of the candidate models for the propensity score or outcome regression is correctly
specified, are these estimators consistent.430

The existing multiply robust estimators µ̂mr–ipw, µ̂mr–cal, and µ̂mr–reg all achieve satisfactory
empirical performances through adding a preceding regularization procedure. However, their
theoretical underpinnings need to be further developed. More specifically, the theoretical results
of the existing multiply robust estimators such as their asymptotic normality are established in
the case where both propensity score and outcome regression models are parametric and the435

parameters in these models are estimated via the maximum likelihood method. In contrast, we
have developed theoretical results of our proposed mixing-based estimator without relying on
parametric modeling assumptions. Any method that provides consistent estimates and guarantees
fast enough rates of convergence for the candidate propensity score and outcome regression
models can be incorporated into our estimator, as outlined in Theorems 1–3.440

6. DISCUSSION

The current literature on multiple robustness, e.g., Han & Wang (2013); Han (2014a,b); Chan
(2013); Chan & Yam (2014), raises an important point that multiple opportunities should be
highly appreciated to achieve the correct specification of both the propensity score and out-
come regression models in missing data problems. Although the doubly robust estimator has two445

chances to achieve consistent estimation, there is no guarantee that either of the two models,
i.e., the propensity score and outcome regression models, is correctly specified. Additionally, as
pointed out by Kang & Schafer (2007), the doubly robust estimator could suffer from severe bias
if both models are misspecified. Hence, the doubly robust estimator should not be regarded as
a panacea, but rather an extra opportunity. In that sense, despite the robustness property of the450

estimating procedures, it is encouraged that more information about the underlying mechanism
is collected and more careful scrutiny of modeling is incorporated.

In this paper, we mainly focus on model combination techniques to improve model specifica-
tion of the final propensity score and outcome regression in the doubly robust estimator. Howev-
er, we point out that model selection techniques can be also applied to the selection of candidate455
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Fig. 1: Comparison between the proposed mixing-based doubly robust estimator µ̂mix and ex-
isting multiply robust estimators µ̂mr–ipw, µ̂mr–cal, and µ̂mr–reg for Kang & Schafer (2007) setting
with sample sizes n = 200 and n = 1000. Four scenarios are considered: (i) one outcome regres-
sion candidate and one propensity score candidate are correct; (ii) only one outcome regression
candidate is correct; (iii) only one propensity score candidate is correct; (iv) no candidates are
correct. The x-axis shows different estimators and the y-axis shows the values of these estima-
tors. The red line represents the true value of each scenario.

models for improved modeling accuracy. Our preliminary analyses using model selection tech-
niques found that when there is one candidate model that has a dominating performance over
the others, the model selection approach could outperform the model combination approach, and
vice versa. We leave further comparisons for future exploration.

In this paper, we develop our methods under the ignorable missingness assumption. Of course, 460

one should be more cautious about model misspecification with non-ignorable missingness data.
For interested readers, we refer to Miao et al. (2015) and Miao & Tchetgen Tchetgen (2016)
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for doubly robust estimators of the mean of the response variable when the missingness is non-
ignorable, and Han (2018) for discussion of a multiply robust method for non-ignorable missing
data. We leave the generalization of our methods to those settings as a future research topic.465

We end by pointing out that the multiply robust estimators discussed in this paper are different
from other multiply robust estimators in the literature, though they bear the same name. For ex-
ample, the multiply robust estimators proposed by Tchetgen Tchetgen & Shpitser (2012) model
three rather than two parts of the likelihood function and they are consistent for their parameters
of interest when two out of the three models are correctly specified. Those estimators cannot be470

interpreted as special cases of doubly robust estimators under our framework.
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Supplementary material includes a derivation of a constraint on δ from (7), and proofs of all
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