
A Unified Approach to Sparse Tweedie Modeling of
Multi-Source Insurance Claim Data

Simon Fontaine⇤, Yi Yang†, Wei Qian‡, Yuwen Gu§, Bo Fan¶

March 10, 2019

Abstract

Actuarial practitioners now have access to multiple sources of insurance data correspond-

ing to various situations: multiple business lines, umbrella coverage, multiple hazards, and

so on. Despite the wide use and simple nature of single-target approaches, modeling these

types of data may benefit from a simultaneous approach. We propose a unified algorithm

to perform sparse learning of such fused insurance data under the Tweedie (compound Pois-

son) model. By integrating ideas from multi-task sparse learning and sparse Tweedie mod-

eling, our algorithm produces flexible regularization that balances predictor sparsity and

between-sources sparsity. When applied to simulated and real data, our approach clearly

outperforms single-target modeling in both prediction and selection accuracy, notably when

the sources do not have exactly the same set of predictors. An efficient implementation of

the proposed algorithm is provided in our R package MStweedie, which is available at

https://github.com/fontaine618/MStweedie.

Keywords: Multi-source insurance data, Tweedie model, Regularization, Multi-task learning,

Groupwise proximal gradient descent, Backtracking line search
⇤Department of Mathematics and Statistics, University of Montreal (fontaines@dms.umontreal.ca)
†Corresponding author, Department of Mathematics and Statistics, McGill University (yi.yang6@mcgill.ca)
‡Department of Applied Economics and Statistics, University of Delaware (weiqian@udel.edu)
§Department of Statistics, University of Connecticut (yuwen.gu@uconn.edu)
¶Department of Statistics, University of Oxford (bo.fan@lmh.ox.ac.uk)

1

https://github.com/fontaine618/MStweedie

1. INTRODUCTION

Insurance claim data is characterized by excess zeros, corresponding to insurance policies without

any claims, and highly right-skewed positive values associated with nonzero claim amounts, typically

in monetary value. The modeling of insurance claim data helps to predict the expected loss associated

with a portfolio of policies and is widely used for premium pricing. As claim data reflect a unique

mixed nature of distributions with both discrete and continuous components, there are generally

two popular modeling approaches. The first type considers a frequency-severity approach where

claim frequency (i.e., whether a claim exists or not) and claim amount are modeled separately

(Yip and Yau, 2005; Frees et al., 2011a; Shi et al., 2015), so that the two models need to be used

together for claim loss prediction. The second type uses Tweedie’s compound Poisson model (or

Tweedie model for short; Tweedie, 1984) that considers an inherent Poisson process and models

both components simultaneously. Our study will focus on the second approach that draws upon

Tweedie distribution’s natural structure for claim data modeling (Smyth and Jørgensen, 2002; Frees

et al., 2011b; Zhang, 2013; Shi et al., 2016). It is also common practice that insurers collect and

maintain external information associated with insurance policies either directly from policy holders

or from third-party databases. Covariates generated from the external information can be associated

with the claim loss and help improve the modeling process. Depending on the type of insurance,

this information may consist of policyholder’s characteristics (demographics, employment status,

experience, etc.) of the insured object characteristics (car type and usage, property value, etc.) or of

any other characteristic deemed relevant.

Traditionally, actuarial practitioners adopt a single-target approach that, for a given insurance

product, assumes one population to be homogeneously characterized by some covariates and aims

to build a single Tweedie model solely from the product’s sample data. Despite the wide use and

simple nature of this approach, practitioners now have access to multiple sources of insurance data.

For instance, many insurers have multiple business lines such as the auto insurance and the property

insurance; in umbrella coverage, claim amounts are available for multiple types of coverage and for

different hazard causes of the same coverage; multiple data sets can be accumulated for a long period

of time, during which business environment may have changed significantly so that earlier-year and

later-year data sources may not be treated as one homogeneous population. As a result, the modern

multi-source insurance data may not be characterized well by a homogeneous model. With these

emerging multi-source insurance data problems, much attention has been drawn to addressing their

2

modeling issues in statistics and actuarial science. Both the frequency-severity and Tweedie model

approaches have been investigated in the context of multivariate regressions to model the multiple

responses simultaneously (see Frees et al., 2016; Shi, 2016 and references therein).

Variable selection is one of the most important tasks in building transparent and interpretable

models for claim loss prediction. Large-scale high-dimensional sparse modeling is commonly

encountered as hundreds of covariates are often considered as candidate variables while only a

few of them are believed to be associated with the claim loss or can be used in the final model

production. Under the single population setting, efficient variable selection approaches designed

for the Tweedie model have been developed via a shrinkage-type approach (see Qian et al., 2016

and references therein). The increasingly prevalent multi-source data scenarios coupled with high

dimensionality and large data scale pose new challenges to actuarial practitioners. To our knowledge,

the corresponding variable selection issues for multi-source Tweedie models have not been studied

in the literature. On the one hand, simply treating all different data sources as if they were from one

population is problematic due to severe model misspecification. On the other hand, it may not be

ideal either to perform variable selection separately on each individual data source because it often

results in a loss of estimation efficiency. In the aforementioned multi-line, multi-type or multi-year

scenarios, the different data sources often contain similar types of covariates and some (or all) of

them can be relevant across some (or all) data sources, even if different data come from totally

different sets of customers. For example, both auto and property insurance contain geographical,

credit, and experience variables that may be important in both lines of business. Therefore, a proper

variable selection process should ideally take advantage of the potential connections among data

sources as opposed to simply treating each data source separately.

In this paper, we augment the multi-source claim data analysis through an integrated shrinkage-

based Tweedie modeling approach that fuses different data sources to find commonly shared relevant

covariates. To insure our method is plausible, we will assume that the different sources have some

(if not all) covariates in common. At the same time, our method retains the ability to recover model

structures and covariates unique to individual data sources. In particular, we impose a composite

adaptive lasso-type penalty (Tibshirani, 1996; Zou, 2006; Simon et al., 2013) in the composite

Tweedie model to obtain both common and source-specific variables simultaneously. We study

several different candidate penalty terms for our multi-source data setting and devise a new algorithm

(named MStweedie) to efficiently solve the corresponding optimization problems in a unified fashion.

Our proposal is closely related to the celebrated multi-task lasso in Lounici et al. (2011) that intends

3

to uncover shared information across different tasks while achieving improved estimation, selection

and prediction efficiency compared to independent variable selection (Obozinski et al., 2008; Lounici

et al., 2009; Huang et al., 2010; Lounici et al., 2011) under least square settings. Different from the

existing multi-task learning and related studies that mainly focused on the least squares (see e.g.,

Jenatton et al., 2010; Morales et al., 2010; Kim and Xing, 2012) or classification (see e.g., Zhang

et al., 2008; Friedman et al., 2010; Obozinski et al., 2010; Vincent and Hansen, 2014; Qian et al.,

2018) setting, our proposal solves the important challenges posed by the semi-continuous, highly

right-skewed claim data with excess zeros which cannot be efficiently modeled by a Gaussian or

logit distribution. In particular, we show that the MStweedie algorithm is theoretically guaranteed

to converge to the optimization target with at least linear rate, and is practically flexible to handle

source-specific missing covariates. In addition, we implement our proposal in an efficient and

user-friendly R package called MStweedie (standing for Multi-Source Tweedie modeling), which

is available at https://github.com/fontaine618/MStweedie.

The paper is organized as follows. In Section 2, we introduce the sparse Tweedie model for

multi-source claim data and derive a general objective function. Section 3 develops a unified

algorithm to efficiently optimize that objective. Section 4 provides the details of implementation and

tuning parameter selection for the proposed algorithm. In Section 5, we compare the performance of

our proposal to other existing methods in a series of numerical experiments on both simulated and

real data. Section 6 concludes the paper. The technical proofs are relegated to the appendix.

2. METHODOLOGY

2.1. Tweedie’s Compound Poisson Model

The Tweedie model is closely related to the exponential dispersion models (EDM; Jørgensen, 1987):

fY (y|✓,�) = a(y,�) exp
n
y✓ � (✓)

�

o
,

parameterized by the natural parameter ✓ and dispersion parameter �, where (·) is the cumulant

function and a(·) is the normalizing function. Both a(·) and (·) are known functions. It can be

shown that Y has mean µ ⌘ E(Y) = ̇(✓) and variance Var(Y) = �̈(✓), where ̇(✓) and ̈(✓)

denote the first and second derivatives of (✓), respectively. In this paper, we are primarily interested

in the Tweedie EDMs, a class of EDMs that have the mean-variance relationship Var(Y) = �µ
⇢,

4

https://github.com/fontaine618/MStweedie

where ⇢ is the power parameter. Such mean-variance relation gives

✓ =

8
><

>:

µ1�⇢

1�⇢ , ⇢ 6= 1

log µ, ⇢ = 1
and (✓) =

8
><

>:

µ2�⇢

2�⇢ , ⇢ 6= 2

log µ, ⇢ = 2
. (1)

In particular, when ⇢ 2 (1, 2), the Tweedie EDMs correspond to a family of distributions called

the compound Poisson distributions. In the sequel, we briefly discuss the compound Poisson

distributions and their connection to the Tweedie EDMs. A compound Poisson random variable can

be written as the sum of a (random) Poisson number of Gamma random variables. Specifically, let

Z1, Z2, . . . , ZN be N i.i.d. random variables from Gamma(↵, �), where N follows Poisson(�). We

assume that the Zi’s are independent of N . Then the sum of the Zi’s

Y =

8
<

:
0 if N = 0,

Z1 + Z2 + · · ·+ ZN if N = 1, 2, . . .
(2)

follows the compound Poisson distribution:

fY (y|�,↵, �) = P (N = 0)�0(y) +
1X

j=1

P (N = j)fY |N=j(y)

= e
��

�0(y) +
1X

j=1

�
j
y
j↵�1

e
���y/�

j!�j↵�(j↵)
,

where �0 is the Dirac delta mass at zero, fY |N=j(·) is the conditional density of Y given N = j, and

�(·) is the gamma function. The compound Poisson distributions fit into a special class of Tweedie

EDMs with ⇢ 2 (1, 2). To see this, we reparameterize (�, �,↵) by

� =
1

�

µ
2�⇢

2� ⇢
, ↵ =

2� ⇢

⇢� 1
, and � = �(⇢� 1)µ⇢�1

.

The compound Poisson model will then have the form

log fY (y|µ,�, ⇢) =
1

�

✓
y
µ
1�⇢

1� ⇢
�

µ
2�⇢

2� ⇢

◆
+ log a⇢(y,�), (3)

5

where

a⇢(y,�) =

8
><

>:

1
y

P1
j=1

yj↵

j!(⇢�1)j↵�j(↵+1)�(j↵)
if y > 0,

1 if y = 0.

It can be directly seen that (3) belongs to the Tweedie EDMs. As a result, for the rest of this paper,

we simply refer to (3) as Tweedie’s compound Poisson model (or the Tweedie model), and denote it

by Tw(µ,�, ⇢), where 1 < ⇢ < 2.

This equivalence provides a very intuitive justification for the use of the Tweedie distribution

in modeling insurance claim data: the random variable N corresponds to the number of claims

during the exposure period, Z1, . . . , ZN correspond to the claim amounts, and Y =
PN

j=1 Zj then

corresponds to the aggregate claim amount. The case Y = 0 represents the absence of claims during

the exposure period and is a frequent situation for this type of data.

2.2. A Sparse Tweedie Modeling Framework for Multi-Source Claim Data

Suppose the claim data consist of K data sources (possibly from different policy products), and each

data source k (1  k  K) has nk policies. Given any policy i in data source k, assume exposure

is w(k)
i . Denote by Ỹ

(k)
i =

PN
(k)
i

j=1 Z
(k)
i,j the claim loss, where N

(k)
i is the claim frequency and the

Z
(k)
i,j ’s are the claim severity. The goal is to model the pure premium Y

(k)
i = Ỹ

(k)
i /w

(k)
i . Here, the

exposure is a known measure of certain risk in force (e.g., the exposure of a personal auto insurance

can be the policy duration) so that in the Tweedie model, we assume N
(k)
i ⇠ Poisson(�(k)

i w
(k)
i) and

Ỹ
(k)
i,j |N

(k)
i ⇠ Gamma(↵, �(k)

i), where �
(k)
i represents a policy-specific parameter for the expected

claim frequency under unit exposure, �(k)
i is a policy-specific parameter for claim severity, and ↵ is

a known scalar (Dunn and Smyth, 2005). Further assume a mean-variance relation Var(Y ⇤(k)
i) =

�
(k)
{E(Y ⇤(k)

i)}⇢, where Y
⇤(k)
i is the pure premium under unit exposure (that is, w(k)

i = 1) and �
(k)

is the source-specific dispersion. Then we have Y
(k)
i ⇠ Tw(µ(k)

i ,�
(k)
/w

(k)
i , ⇢) with µ

(k)
i = E(Y (k)

i)

(Smyth and Jørgensen, 2002; Yang et al., 2017).

Suppose that each policy i in data source k has p covariates x(k)
i = (x(k)

i1 , . . . , x
(k)
ip)>. For brevity,

we assume these covariates are of the same type with equal dimension across different data sources,

but as will be discussed in our numerical studies, we can generalize this setting to handle possibly

unequal dimension scenarios. We adopt the commonly used multiplicative logarithmic link

log µ(k)
i = ⌘

(k)
i = �

(k)
0 + x(k)>

i �(k)
,

6

where �(k) = (�(k)
1 , · · · , �

(k)
p)> with �

(k)
j being the j-th element of �(k), j = 1, . . . , p. Let

�0 = (�(1)
0 , · · · , �

(K)
0)>, �j = (�(1)

j , · · · , �
(K)
j)>, and � = (�>

1 , · · · ,�
>
p)

>
2 RpK be the target

coefficient parameters. Assume that only a small fraction of the covariates in x(k)
i are relevant to y

(k)
i

so that many elements in �(k) are zero. The multi-source data setting naturally leads to a composite

objective function

L(�0,�) =
KY

k=1

nkY

i=1

fY (y |µ
(k)
i ,�

(k)
/w

(k)
i , ⇢), (4)

which, assuming independence across different data sources, becomes the likelihood function. When

the independence assumption is violated, (4) can still be viewed as a composite marginal likelihood

(Varin et al., 2011), the study of which plays an important role in allowing feasible estimation of

marginal parameters (see e.g., Chandler and Bate, 2007; Shi, 2016). Without loss of generality,

we assume same dispersion � = �
(1) = · · · = �

(K) across all data sources (otherwise, we can

simply adjust w(k)
i ’s in (5) accordingly). Hence, we assume common dispersion parameters between

subjects; it does not much affect the modeling of the mean since the two parameters, µ and �, are

orthogonal to each other from the compound Poisson-Gamma distribution (Shi, 2016). Taking

negative logarithm and omitting constant terms, we obtain the following objective function (up to a

dispersion scalar)

`(�0,�) =
KX

k=1

nkX

i=1

w
(k)
i

⇢
�
y
(k)
i e

(1�⇢)⌘
(k)
i

1� ⇢
+

e
(2�⇢)⌘

(k)
i

2� ⇢

�
, (5)

which is the negative log-likelihood under the independence assumption and is a convex objective.

To take advantage of the commonly shared relevant covariates while recovering source-specific

model structures, we consider the composite penalty (Zhao et al., 2009)

P↵(�) =
pX

j=1

vj

⇥
(1� ↵)||�j||q + ↵||�j||1

⇤

for some 0  ↵  1 and q 2 {2,1}, where the vj’s are the penalty weights. The first component in

P↵(�) is aimed to find common relevant covariates across data sources and the second component

is intended to deal with potential between-source differences in sparsity and to find source-specific

relevant covariates. When ↵ = 0, P↵(�) simplifies to the group lasso if q = 2 (Yuan and Lin, 2006),

while it gives a different “group discount” if q = 1 as only the largest coefficient is penalized

(Obozinski et al., 2006). In both cases, when the j-th covariate is selected by the model, then it

7

is selected for all sources, which means that the coefficient �(k)
j will be non-zero for all sources

k = 1, . . . , K. When 0 < ↵ < 1 and q = 2 , P↵ (�) becomes the sparse group lasso (Simon et al.,

2013). In that case, when the j-th feature is included in the model, the q-norm of �j is still freed

from zero, but each individual coefficient are individually penalized so that some components of �j

may still remain zero even though other components will be non-zero; selecting the j-th feature only

insure that the coefficient for at least one (but not necessarily all) source is non-zero. The use of the

penalty weights is motivated from the adaptive Lasso (Zou, 2006) for improved variable selection

performance. Our integral approach to sparse Tweedie modeling for multi-source data aims to solve

the regularized objective

f
⇤ = min

�0,�
f(�0,�), f(�0,�) = `(�0,�) + �P↵(�), (6)

where � > 0 is the tuning parameter. We call (6) the L1/Lq(↵) regularization, and when ↵ = 0, we

simply call it L1/Lq regularization (q = 2 or1).

As in most multi-task learning algorithms, our proposed approach has a single-task reinterpreta-

tion. Indeed, similar to Turlach et al. (2005), we can model the response y
(k)
i through the equivalent

log-link for the mean:

log µ(k)
i =

KX

l=1

I (l = k) �(k)
0 +

h
I (l = k)x(k)

i

i>
�(k) = x̃(k)>

i �,

where

x̃(k)>
i =

0

B@0,0>
K , . . . , 1, x(k)>

i| {z }
position k+1

, . . . , 0,0>
K

1

CA ,

�> =
⇣
�
(1)
0 ,�(1)>

, . . . , �
(k)
0 ,�(k)>

, . . . , �
(K)
0 ,�(K)>

⌘
.

Hence, our model can be seen has a single-source Tweedie model with K · p features (plus the

K intercepts) where a response y
(k)
i has non-zero features only for the group of feature related to

the k-th source. The penalty P↵ (�) then correspond to a sparse group Lasso penalty where the

groups are defined by grouping a feature across sources. The novelty of our algorithm is actually to

profit from the specific structure of the groups and dummy variables to improve the efficiency of

the algorithm. Fitting a single Tweedie with such a description of the groups would be inefficient

8

computationally since a large proportion of the entries of the design matrix would artificially be

zeroes.

3. ALGORITHM

In this section, we propose an efficient algorithm to solve the penalized composite Tweedie model (6).

We decompose the description of our algorithm into four parts: Section 3.1 gives a general idea on

how to solve our optimization problem via the cyclic groupwise proximal gradient descent; Section

3.2 discusses an acceleration scheme for the proposed algorithm; and Section 3.3 provides detailed

solutions to the L1/Lq regularization, which gives necessary information to introduce our complete

algorithm to solve the more general L1/Lq(↵) regularization in Section 3.4.

For data source k, denote the response vector by Y
(k) = (y(k)1 , . . . , y

(k)
nk)

> and the nk ⇥ p design

matrix by X(k) = (x(k)
1 , . . . ,x(k)

nk)
> = (X(k)

1 , . . . , X
(k)
p). For consistency of notation, we also let

X
(k)
0 = 1nk

.

3.1. A Groupwise Proximal Gradient Algorithm for MStweedie

Note that the penalty term P↵(�) in (6) is separable with respect to the indices of the feature sets

j = 1, . . . , p. We exploit this property and propose to iteratively update and cycle through the �j’s

(j = 0, 1, . . . , p) via the proximal gradient (Beck and Teboulle, 2009) scheme which gives rise to a

cyclic groupwise proximal gradient (GPG) algorithm designed for MStweedie. Specifically, let b̃ be

the current iterate

b̃ ⌘ (�̃0, . . . , �̃j�1, �̃j, �̃j+1, . . . , �̃p)
>
,

and b̃�j be the current iterate with the j-th group excluded

b̃�j ⌘ (�̃0, . . . , �̃j�1, �̃j+1, . . . , �̃p)
>
, j = 0, . . . , p.

Suppose we are about to update the group �j = (�(1)
j , . . . , �

(K)
j)> for some j 2 {0, 1, . . . , p}. View

the negative log-likelihood function `(�0,�) in (5) as a function of the j-th group �j , while keeping

all the other groups fixed at b̃�j , i.e., `(�j; b̃�j) = `(�0,�)|�m=�̃m,0mp,m 6=j . For group j, note

that a quadratic approximation to `(�j; b̃�j) around �̃j is given by

`(�j; b̃�j) ⇡ `Qj(�j; b̃, tj) ⌘ `(b̃) +rj`(�̃j; b̃�j)
>(�j � �̃j) +

1

2tj
k�j � �̃jk

2
2, tj > 0. (7)

9

It can be seen that `Qj(�j; b̃, tj) = `(�j; b̃�j) when �j = �̃j for any tj > 0. To ensure the

convergence of the algorithm, the value of tj can be determined using the backtracking line search

(details given later in this section). In (7), the gradientrj`(�̃j; b̃�j) can be written explicitly as

rj`(�̃j; b̃�j) =
@

@�j

`(�j; b̃�j)
���
�j=�̃j

=
�
(⌘̃(k)

� z̃(k))>fW(k)
X

(k)
j

�K
k=1

, (8)

where ⌘̃(k) = (⌘̃(k)1 , . . . , ⌘̃
(k)
nk)

> with ⌘̃
(k)
i =

Pp
j=0 x

(k)
ij �̃

(k)
j , z̃(k) = (z̃(k)1 , . . . , z̃

(k)
nk)

> with

z̃
(k)
i = ⌘̃

(k)
i +

w
(k)
i

w̃
(k)
i

(y(k)i e
(1�⇢)⌘̃

(k)
i � e

(2�⇢)⌘̃
(k)
i), (9)

and fW(k) = diag(w̃(k)
1 , . . . , w̃

(k)
nk) with

w̃
(k)
i = w

(k)
i

�
(⇢� 1)y(k)i e

(1�⇢)⌘̃
(k)
i + (2� ⇢)e(2�⇢)⌘̃

(k)
i
�
. (10)

Now we apply the proximal gradient algorithm on `Qj(�j; b̃, tj) to update �j as follows. For ⌧ > 0,

define the proximal mapping of h(·) = (1� ↵)|| · ||q + ↵|| · ||1 as the minimizer of the following

problem

prox⌧h(u) = argmin
v

✓
⌧h(v) +

1

2
kv � uk22

◆
. (11)

For now, suppose that the solution to (11) is given (methods for computing the minimizer is deferred

to Sections 3.3 and 3.4). We update �j by minimizing the following penalized problem

�+
j (b̃, tj) = argmin

�j

`Qj(�j; b̃, tj) + �P↵,j(�j)

= argmin
�j

1

2
k�j � (�̃j � tjrj`(�̃j; b̃�j))k

2
2 + �vjtjh(�j)

= prox�vjtjh(�̃j � tjrj`(�̃j; b̃�j)). (12)

Note that in (12), when j = 0, we have �+
0 (b̃, t0) = �̃0 � t0rj`(�̃0; b̃�0), since the intercept term

is not penalized, i.e., P↵,0(�0) ⌘ 0.

To guarantee convergence, we determine the step size tj in (12) using backtracking line search.

Define

Gtj(�̃j) =
1

tj
{�̃j � �+

j (b̃, tj)} =
1

tj

�
�̃j � prox�vjtjh(�̃j � tjrj`(�̃j; b̃�j))

.

10

We initialize tj with some tmax > 0 and repeatedly shrink tj with tj �tj for some pre-chosen

0 < � < 1 until

`(�+
j (b̃, tj)) = `(�̃j � tjGtj(�̃j))  `(b̃)� tjrj`(�̃j; b̃�j)

>
Gtj(�̃j) +

tj

2
kGtj(�̃j)k

2
2. (13)

Once (13) is satisfied by �+
j (b̃, tj) for some tj , we set �̃j �+

j (b̃, tj) and move on to the next

group j + 1 and compute the update �+
j+1(b̃, tj+1). The algorithm cyclically updates groups

j = 0, 1, . . . , p, 0, 1, . . . , p, . . . until convergence of (�̃0, �̃).

We summarize our proposal above with backtracking line search in Algorithm 1, and call it

MStweedie-GPG for short. Moreover, we show that the proposed iterative approach is guaran-

teed to converge with at least linear rate in the following theorem, whose proof can be found in

(Appendix D).

Theorem 1. In the MStweedie-GPG algorithm, let (�(r)
0 ,�(r)) be the update of (�0,�) after the

r-th cycle, r � 0. The algorithm with backtracking line search converges to the global minimum f
⇤

of (6) with at least a linear rate of convergence, i.e.,

f(�(r+1)
0 ,�(r+1))� f

⇤
 c(f(�(r)

0 ,�(r))� f
⇤)

for large enough r, where c 2 (0, 1) is a constant.

3.2. Accelerated MStweedie-GPG

In the vanilla MStweedie-GPG algorithm, operation (13) for backtracking is repeatedly evaluated

during each groupwise update, and is thus computationally expensive. We can accelerate our

algorithm by fixing the step sizes and only update them after (�0,�) converges in each loop.

Specifically, instead of searching for a new step size to update �j during each iteration within a loop,

we use a fixed step size t
⇤
j as follows: given (�̃0, �̃) at the beginning of each loop, we set the step

sizes to t
⇤
j = �

�1
j for j = 0, 1, . . . , p, where �j is the largest element ofr2

j`(�̃j; b̃�j) with

r
2
j`(�̃j; b̃�j) =

@
2

@�j@�
>
j

`(�̃j; b̃�j)

= diag
�
X

(k)>
j

fW(k)
X

(k)
j , k = 1, . . . , K

�
. (14)

11

Algorithm 1 MStweedie-GPG with backtracking line search.

1. Initialize the coefficients with (�̃0, �̃) and choose some 0 < � < 1.

2. Cyclic groupwise descent with line search: for j = 0, 1, . . . , p, 0, 1, . . . , p, . . ., iterate steps
(a)–(c) until convergence.

(a) Initialize tj with tmax > 0.

(b) Compute
�+

j (b̃, tj) = prox�vjtjh(�̃j � tjrj`(�̃j; b̃�j))

using the proximal operator in (21), whererj`(�̃j; b̃�j) is calculated from (8).

(c) Compute

Gtj(�̃j) =
1

tj
{�̃j � �+

j (b̃, tj)}.

If
`(�̃j � tjGtj(�̃j)) > `(b̃)� tjrj`(�̃j; b̃�j)

>
Gtj(�̃j) +

tj

2
kGtj(�̃j)k

2
2,

then set tj �tj and go back to step (b). Otherwise, set �̃j �+
j (b̃, tj).

3. Output (�̃0, �̃).

Note: when j = 0, �+
0 (b̃, t0) = �̃0 � t0r0`(�̃0; b̃�0) and Gt0(�̃0) = r0`(�̃0; b̃�0)

12

Algorithm 2 Accelerated MStweedie-GPG.

1. Initialize the coefficients with (�̃0, �̃).

2. Iterate steps (a)–(b) until convergence of (�̃0, �̃).

(a) Compute step sizes t⇤j = �
�1
j for j = 0, 1, . . . , p, where �j is defined in (14).

(b) For j = 0, 1, . . . , p, 0, 1, . . . , p . . . , carry out the cyclic groupwise updates with the fixed
step sizes t⇤j = �

�1
j ,

�̃j �+
j (b̃, t

⇤
j) = prox�vj��1

j h(�̃j � �
�1
j rj`(�̃j; b̃�j))

until convergence of (�̃0, �̃), where the proximal operator is given in (21) and
rj`(�̃j; b̃�j) is calculated from (8).

3. Output (�̃0, �̃).

Next, we make the cyclic updates �̃j �+
j (b̃, t

⇤
j) with

�+
j (b̃, t

⇤
j) =prox�vj��1

j h(�̃j � �
�1
j rj`(�̃j; b̃�j)), (15)

for j = 0, 1, . . . , p, 0, 1, . . . , p . . . until (�̃0, �̃) converges during this loop. Then we re-compute

step sizes t⇤j using (14) and repeat the above process. We refer to this scheme as the Accelerated

MStweedie-GPG (or MStweedie-AGPG for short). We summarize this practically important ac-

celeration strategy in Algorithm 2. It can be seen that the algorithm only updates step sizes after

(�̃0, �̃) converges in the sub-iteration 2(b) of Algorithm 2. A similar technique for accelerating

coordinate descent algorithms can be found in Friedman et al. (2010). Our empirical evidence shows

that MStweedie-AGPG converges very fast and follows an overall descending trend; see Figure A1

in the appendix for an illustration. This is the algorithm we use for all our numerical studies.

3.3. L1/Lq Regularization

In the unified algorithm of Section 3.1, it remains to show how to solve (12). We first discuss the

L1/Lq regularization case (↵ = 0), which will be used in the next subsection to derive solutions to

the more general L1/Lq(↵) regularization with ↵ 2 [0, 1].

The following lemma translates the proximal operator of the L1 regularization (q =1) into a

projection. Its proof is given in Appendix A.

13

Lemma 1. The minimization problem

�+
j (b̃, tj) = argmin

�j

1

2
k�j � (�̃j � tjrj`(�̃j; b̃�j))k

2
2 + �vjtjk�jk1 (16)

is equivalent to

�+
j (b̃, tj) = �̃j � tjrj`(�̃j; b̃�j)� ProjB1(�vjtj)(�̃j � tjrj`(�̃j; b̃�j)), (17)

where ProjB1(⌧)(·) is the L2-projection onto B1(⌧) = {v | ||v||1  ⌧}, the L1-ball with radius ⌧ .

We use an extension of the algorithm suggested by Duchi et al. (2008) to perform fast projections

onto the L1-ball (see Appendix A for details). The KKT conditions of (16) can be shown (see

Appendix B for details) as follows

8
>>>><

>>>>:

k�̃j � tjrj`(�̃j; b̃�j)k1  �vjtj, �j = 0,

k�̃j � tjrj`(�̃j; b̃�j)� �jk1 = �vjtj, �j 6= 0,

�̃
(k)
j � tjrj`(�̃j; b̃�j)(k) � �

(k)
j = 0, �j 6= 0, k 62M(�j),

(18)

where M(�j) =
�
k 2 {1, . . . , K} : k�jk1 = |�

(k)
j |

is the maximizing index set.

Next, we still assume ↵ = 0 and briefly discuss the L2 regularization case (q = 2) in (12). We

will omit most of the details and focus only on its differences from the L1/L1 case. The minimizer

of the penalized objective

�+
j (b̃, tj) = argmin

�j

1

2
k�j � (�̃j � tjrj`(�̃j; b̃�j))k

2
2 + �vjtjk�jk2

has closed form

�+
j (b̃, tj) = (k�̃j � tjrj`(�̃j; b̃�j)k2 � �vjtj)+

�̃j � tjrj`(�̃j; b̃�j)

k�̃j � tjrj`(�̃j; b̃�j)k2
, (19)

and the corresponding KKT conditions are

8
><

>:

k�̃j � tjrj`(�̃j; b̃�j)k2  �vjtj, �j = 0,

�vjtj
�j

k�jk2
+ tjrj`(�̃j; b̃�j) + (�j � �̃j) = 0K , �j 6= 0.

(20)

14

3.4. L1/Lq(↵) Regularization

With the L1/Lq regularization discussed in the previous subsection to take advantage of possibly

common covariates across data sources, we are now ready to discuss the more general L1/Lq(↵)

regularization (0  ↵  1) to achieve the goal of uncovering relevant covariates unique to some

data source.

It could seem complicated to derive a closed form expression of the above proximal operator (the

Fenchel conjugate of f cannot be derived explicitly), but it is possible to solve it with a proximal

technique originally developed for the hierarchical group lasso (Jenatton et al., 2010). Specifically,

we rewrite our composite penalty as a sum of Lq-norms (q = 2 or1) on a set of groups G that is

tree-structured by noting that k�jk1 is separable across k = 1, . . . , K

(1� ↵)k�jkq + ↵k�jk1 = (1� ↵)k�jkq + ↵

KX

k=1

|�
(k)
j |

= (1� ↵)k�jkq +
KX

k=1

↵k�
(k)
j kq,

where we can identify G = {{1}, . . . , {K}, {1, . . . , K}}, which is tree-structured. Consequently,

we only require the proximal operator of each norm and compose them according to the tree ordering.

Let u = �̃j�tjrj`(�̃j; b̃�j) and ⌧ = �vjtj . It is known from Section 3.3 that the proximal operator

of (1� ↵)⌧k.kq is

prox(1�↵)⌧k·kq(u) =

8
><

>:

u� ProjB1((1�↵)⌧)(u), q =1,

(kuk2 � (1� ↵)⌧)+
u

kuk2 , q = 2,

and the proximal operator of ↵⌧ | · | is given by the soft-thresholding operator

prox↵⌧ |·|(uk) = sgn(uk) (|uk|� ↵⌧)+ =: S(uk,↵⌧).

Defining S(u,↵⌧) as the component-wise soft-thresholding operator, i.e., [S(u,↵⌧)]k = S(uk,↵⌧),

15

we get

prox⌧h(u) = prox(1�↵)⌧k·kq (S(u,↵⌧))

=

8
><

>:

S(u,↵⌧)� ProjB1((1�↵)⌧)(S(u,↵⌧)), q =1,

(kS(u,↵⌧)k2 � (1� ↵)⌧)+
S(u,↵⌧)

kS(u,↵⌧)k2 , q = 2,
(21)

the computation of which has been already studied in Section 3.3.

Remark. Although we could wish for a general algorithm for all q � 1, our construction is only

valid for q 2 {2,1}. As shown in Jenatton et al. (2010), the property used to derive the proximal

operator of the composite penalty is only true when q 2 {2,1}. Note also that the case q = 1 is

simply the Lasso.

3.5. Missing Features Properties

One of the assumptions behind our algorithm is that all sources share exactly the same set of features.

In practice, distinct sets of features may be encountered from different sources. For example, if a

dataset contains policies from different years where some additional information is available in the

later years, we may split the data into two sources where the first source contains fewer predictors

than the second one. Another example is the case where data come from – literally – different

sources that do not keep track of exactly the same information on the policy.

Suppose that the j-th feature is missing from the k-th source. We can set X(k)
j = 0 for the

corresponding j and k. It can be shown that this treatment, together with the initialization �
(k)
j = 0,

keeps �(k)
j at zero throughout the entire algorithm for all choices of q 2 {2,1} and 0  ↵  1.

This way, predictor j of source k is systematically excluded from the model.

Indeed, at any point of the algorithm, we have

rj`(�̃j; b̃�j)
(k) = (⌘̃(k)

� z̃(k))>fW(k)
X

(k)
j = 0.

Hence, in the proximal operator, we have uk = �̃
(k)
j � tjrj`(�̃j; b̃�j)(k) = 0� 0 = 0. Then, the

soft-thresholding operator produces

S(uk,↵⌧) = sgn(uk)(|uk|� ↵⌧)+ = 0

16

for any 0  ↵  1. Thus, for q = 2, we get

[prox⌧h(u)]k = (||S(u,↵⌧)||2 � (1� ↵)⌧)+
S(uk,↵⌧)

||S(u,↵⌧)||2
= 0,

and, for q =1,

[prox⌧h(u)]k = �
⇥
ProjB1((1�↵)⌧)(S(u,↵⌧))

⇤
k
= � sgn(uk)(|uk|� ⇠)+ = 0.

In any case, we obtain �
(k)+
j = [prox⌧h(u)]k = 0. It should be pointed out that this property does

not prevent the same feature from being included in the model for other sources, though.

4. IMPLEMENTATION

4.1. Regularization Path

To select the tuning parameter, we apply the MStweedie-GPG algorithm on a decreasing sequence

(�l)Ll=1. The sequence of the corresponding solutions produces the solution path when a fine grid of

� is used. We present the solution path algorithm for solving MStweedie in Algorithm 3, where we

wrap the MStweedie-GPG algorithm in an outer loop over the � sequence. The sequence starts at

�1 = �max, chosen so that all coefficients except the intercepts are shrunken to zero, and iterates

successively to smaller values of � until the last value, �L, is reached.

The full sequence of � is chosen as follows. We first compute �max via the KKT conditions

(see below for details) and set �min = "�max for some small " (e.g., " = 10�3). Then, we

construct a logarithmically decreasing sequence from �max to �min, i.e., �l = �max (�min/�max)
l�1
L�1 ,

where l = 1, . . . , L. Note that we want �̃j = 0 for all j 6= 0 when � = �max. From the KKT

conditions, that requires � � v
�1
j krj`(�̃j; b̃�j)k1 for all j 6= 0. Therefore, we can choose

�max = max1jp v
�1
j krj`(�̃j; b̃�j)k1. Now at � = �max, we have �̃(init) = 0 and

�̃
(k)
0 (init) = argmin

�
(k)
0

nkX

i=1

w
(k)
i

⇢
�y

(k)
i

e
(1�⇢)�

(k)
0

1� ⇢
+

e
(2�⇢)�

(k)
0

2� ⇢

�
,

= log

Pnk
i=1 w

(k)
i y

(k)
iPnk

i=1 w
(k)
i

, k = 1, . . . , K. (22)

17

Algorithm 3 Solution path algorithm for solving MStweedie

1. Initialize �̃j = 0 and �̃0 = �̃0(init) according to (22).

2. Compute rj`(�̃j; b̃�j) using (23) and set �max = max1jp v
�1
j krj`(�̃j; b̃�j)k1 and � =

�max.

3. For l = 2, . . . , L, do

(a) Increment � �

⇣
�min
�max

⌘ 1
L�1 ,

(b) Update �̃ using Algorithm 1.

Consequently, we obtain ⌘̃
(k)
i = �̃

(k)
0 (init) and

rj`(�̃j; b̃�j)
(k) =

nkX

i=1

w̃
(k)
i

�
⌘̃
(k)
i � z̃

(k)
i

�
x
(k)
ij , (23)

which now can be used to determine �max.

Once a solution path
�
(�̃

[l]

0 , �̃
[l]
)
 L

l=1
is obtained, we could use cross-validation (CV) to perform

the model selection, where the out-of-sample prediction deviance may be used as the guided criterion.

The scaled deviance from a single observation is

d
(k)
i = �2�

�
log fY (y

(k)
i |µ

(k)
i ,�, ⇢)� log fY (y

(k)
i |y

(k)
i ,�, ⇢)

= 2

⇢
y
(k)(2�⇢)
i � y

(k)
i µ

(k)(1�⇢)
i

1� ⇢
�

y
(k)(2�⇢)
i � µ

(k)(2�⇢)
i

2� ⇢

�
,

where µ
(k)
i = exp(�̃(k)

0 + x(k)>
i �̃

(k)
), and the full deviance is then the weighted sum across all

observations from all sources. Often, we choose the optimal � as the one that minimizes the CV

deviance (call it �m). If model simplicity and interpretability are more of a concern, one may prefer

the one-standard-error rule (Hastie et al., 2009), i.e., choose optimal � as the largest �l within one

standard error of �m.

4.2. Further Acceleration and Stabilization Strategies

Two tricks suggested by Friedman et al. (2010) are added to our algorithm. Firstly, the solution path

is computed using warm starts at each iteration in order to increase the stability of the algorithm.

18

Algorithm 4 MStweedie sequential strong rule.

1. Do while V 6= ;:

(a) Identify S = {j : krj`(�̃j; b̃�j)kq⇤ � vj(2�l � �l�1)} and S
C = {1, . . . , p} \ S.

(b) Update �̃ as in Algorithm 1 while keeping �̃j = 0 for all j 2 S
C .

(c) Identify the violations V = {j : krj`(�̃j; b̃�j)kq⇤  �vj, j 2 S
C
}.

Note: q⇤ = 1 if q =1 and q
⇤ = 2 if q = 2.

This means that the initialization at � = �l is chosen to be the solution b̃[l�1] = (�̃
[l�1]

0 , �̃
[l�1]

)

from previously � = �l�1. Secondly, the MStweedie-GPG algorithm is augmented with the

active set updates: we first run a full cycle of the updates and identify the set of active predictors

A = {j 2 {1, . . . , p}|�̃j 6= 0}, and then repeat the cycles only over j 2 A until convergence.

Another method to speed up the calculations, similar to the active set updates, is the sequential

strong rule (Tibshirani et al., 2012). Specifically, it is designed to identify an active set on which to

perform the full MStweedie-GPG algorithm at each �. Before entering the algorithm at �l, we check

the following conditions for each j = 1, . . . , p:

��rj`(�̃
[l�1]

j ; b̃[l�1]
�j)

��
1
< vj(2�l � �l�1).

We exclude every predictor with index j that meets the above condition and run the MStweedie-GPG

algorithm on the remaining predictors. Once the algorithm reaches convergence with these remaining

variables, we perform a final check to verify that we do not accidentally exclude a predictor that

should have been included. The check is based on the KKT conditions: for each predictor j initially

excluded, we verify the KKT condition with �j = 0, which requires krj`(�̃j; b̃�j)kq⇤  �vj ,

where q
⇤ = 1 if q = 1 and q

⇤ = 2 if q = 2. If at least one condition is violated, then the

corresponding predictor is added back to the active set. This process is repeated until the KKT

condition is satisfied for all excluded predictors.

The algorithm with the sequential strong rule is presented in Algorithm 4.

4.3. Adaptive MStweedie

We also consider an adaptive version of MStweedie (a-MStweedie). The a-MStweedie is motivated

from Zou (2006), where the adaptive lasso is used to improve model selection performance over the

19

regular lasso. In a-MStweedie, we first obtain b�
⇤
, the cross-validated parameter estimate under equal

penalty factors (i.e., vj = 1 for all 1  j  p). Then, we update the penalty factors vj = ||b�
⇤
j ||

�'
q

for some ' > 0 (default is ' = 1) and refit the model with these new penalty factors. When the

initial CV yields b�
⇤
j = 0 for some j, we set vj to a large machine number to ensure that this variable

is not included in the adaptive modeling.

5. NUMERICAL STUDIES

5.1. Performance Assessment

We use deviance as the criterion to access model fit. First of all, we split the data into two parts: a

training set on which a model is fit to yield the coefficient estimates, and a testing set on which these

estimates are used for prediction. The train and test deviances are then obtained respectively from

these two sets.

Three measures are considered for assessing selection performance: the percentage of variables

correctly identified (accuracy), the percentage of identified variables that are indeed true variables

(precision), and the percentage of true variables identified (recall). These three measures describe

different aspects of a variable selection result and are widely used in classification and pattern

recognition (see e.g., Fawcett, 2006). In terms of overall performance, accuracy is perhaps a more

interesting measure as our goal is not only to find the true predictors but also to exclude those

spurious ones.

5.2. Synthetic Data

We consider a variety of settings under which our algorithm is tested and compared to existing ones.

Setting 1 – Unequal coefficients, p < nk

This simulation setting is inspired by Gong et al. (2012), in which we set the number of sources to

K = 10, the number of observations to nk = 400, k = 1, . . . 10, and the number of covariates to

p = 100. The covariates are generated from independent normal distributions. Moreover, we set

the coefficient matrix � to zero everywhere except the last 10 columns, which are generated from

independent normal distributions of mean 0 and variance 42� with � = 0.1. Finally, we generate the

responses y(k)i from Tw(µ(k)
i ,�, ⇢) with � = 1 and ⇢ = 1.5, where µ

(k)
i = exp(x(k)>

i �(k)) for all i

and k.

20

Table 1: Results from Setting 1 with 100 replications. Part (a) shows the mean values of the

statistics (with their standard errors listed in the parentheses). Part (b) shows the mean rank

across the six models and, in parentheses, the number of times the model is best.

(a) Setting 1: Mean (standard error)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 2,642,427 17,710 17,330 5,963 7,763 5,590
(553,415) (3,234) (2,066) (523) (717) (723)

Size 1.02 (0.36) 89.37 (0.43) 89.46 (0.89) 10.00 (0.00) 40.19 (1.34) 10.00 (0.00)

Accuracy 89.9 (0.2) 20.6 (0.4) 20.5 (0.9) 100.0 (0.0) 69.8 (1.3) 100.0 (0.0)
Precision 94.0 (1.9) 11.2 (0.1) 11.3 (0.1) 100.0 (0.0) 28.3 (1.1) 100.0 (0.0)
Recall 4.6 (1.2) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
L2 loss 12.76 (0.01) 1.56 (0.04) 1.87 (0.06) 1.20 (0.06) 1.30 (0.06) 1.03 (0.07)

(b) Setting 1: Mean rank (# of times best)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 6.00 (0) 4.00 (5) 4.74 (0) 2.08 (16) 2.89 (2) 1.29 (77)

Size 1.06 (97) 5.36 (0) 5.58 (0) 1.97 (3) 4.00 (0) 1.97 (3)

Accuracy 3.04 (0) 5.36 (0) 5.58 (0) 1.00 (100) 3.93 (0) 1.00 (100)
Precision 1.27 (89) 5.35 (0) 5.57 (0) 1.00 (100) 3.97 (0) 1.00 (100)
Recall 6.00 (0) 1.00 (100) 1.00 (100) 1.00 (100) 1.00 (100) 1.00 (100)
L2 loss 6.00 (0) 3.74 (9) 4.86 (0) 2.29 (9) 2.77 (1) 1.34 (81)

We randomly split the above data into two equal parts (nk = 200 for each source): the first

part is used to tune the model via ten-fold CV, while the second is used for testing the model. The

results are averaged over 100 replications. The following models are compared: Full Lasso (L1-

regularized Tweedie model on the full dataset, using the HDtweedie package by Qian et al. (2016)),

Individual Lasso (Individual L1-regularized Tweedie model for each source, also using HDtweedie),

and MStweedie with L1/L1, L1/L2, a-L1/L1 (adaptive L1/L1) and a-L1/L2 (adaptive L1/L2)

regularizations.

Part (a) of Table 1 lists the averages and standard errors of different statistics. The test deviance,

measuring the goodness of fit of the corresponding model, shows that MStweedie with the adaptive

L1/L2 regularization is the best while the Full Lasso performs very poorly on this matter. The poor

performance of Full Lasso is due to the fact that it has identical estimates across sources, which is

apparently not true according to our data generating mechanism.

If we disregard the Full Lasso (which selected no features 81 out of 100 times), the two adaptive

procedures performed the best in terms of variable selection performance, where each picks exactly

10 predictors in every replication. This selection matches exactly the true active variables so that

both a-L1/L2 and a-L1/L1 achieve perfect accuracy, precision and recall. For the other models, the

number of selected variables is much larger, yielding low precision and accuracy even with perfect

recall. Finally, a-L1/L2 produces estimates that are closest (in L2 norm) to the true coefficients. For

21

Table 2: Results from Setting 2 with 100 replications. Part (a) shows the mean values of the

statistics and their standard errors in parentheses. Part (b) shows the mean rank across the six

models and, in parentheses, the number of times the model is best.

(a) Setting 2: Mean (standard error)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 1,430 1,136,266 3,096 1,161 6,968 2,572
(142) (265,655) (604) (129) (1,277) (642)

Size 22.07 (0.76) 29.73 (1.44) 71.10 (2.33) 5.00 (0.00) 37.86 (0.94) 5.00 (0.00)

Accuracy 97.2 (0.1) 95.7 (0.2) 89.0 (0.4) 100.0 (0.0) 94.5 (0.2) 100.0 (0.0)
Precision 24.5 (0.6) 22.6 (2.0) 8.1 (0.4) 100.0 (0.0) 14.2 (0.4) 100.0 (0.0)
Recall 100.0 (0.0) 91.2 (2.5) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
L2 loss 0.43 (0.03) 8.86 (0.07) 0.70 (0.02) 0.34 (0.01) 1.03 (0.06) 0.53 (0.05)

(b) Setting 2: Mean rank (# of times best)

Full Lasso Ind. Lasso L1/L1 a-L1/L1 L1/L2 a-L1/L2

Test dev. 2.09 (30) 6.00 (0) 3.89 (0) 1.57 (55) 4.90 (0) 2.55 (15)

Size 3.34 (0) 3.87 (7) 5.97 (0) 1.06 (94) 4.67 (0) 1.06 (94)

Accuracy 3.34 (0) 4.01 (0) 5.97 (0) 1.00 (100) 4.67 (0) 1.00 (100)
Precision 3.32 (0) 3.94 (5) 5.96 (0) 1.00 (100) 4.66 (0) 1.00 (100)
Recall 1.00 (100) 1.70 (86) 1.00 (100) 1.00 (100) 1.00 (100) 1.00 (100)
L2 loss 2.16 (25) 6.00 (0) 3.84 (0) 1.44 (61) 4.97 (0) 2.59 (14)

both L1/L1 and L1/L2, their adaptive versions greatly increase the selection accuracy and precision

by picking much fewer variables while achieving lower deviance and L2-loss. Overall, L1/L1

exhibits similar performance to Individual Lasso, but its adaptive version increases the performance

significantly.

The results about the ranking of these methods, reported in part (b) of Table 1, gives similar

conclusions. However, we can see that, although being the best on average, a-L1/L2 is occasionally

outperformed by either Individual Lasso or a-L1/L1 in terms of test deviance.

Setting 2 – Equal coefficients, p > nk

In this setting, we consider the high-dimensional scenario (p > nk) with local correlation structure.

The data are generated similarly as in Gu et al. (2016) with nk = 300, p = 600 and K = 5. We

generate the covariates x(k)
i from the multivariate normal distribution with mean 0 and covariance

matrix ⌃ = (0.5|i�j|)pi,j=1 and set �j = 0 for all j except j 2 {2, 4, 8, 16, 32} where it is set to 2 in

all sources. We then simulate the responses as in Setting 1 using µ
(k)
i = exp(x(k)>

i �(k)), � = 1 and

⇢ = 1.5. Results below are summarized from 100 replications.

Part (a) of Table 2 contains the average values and standard errors of the different statistics.

The lowest average test deviance is achieved by a-L1/L1 followed closely by Full Lasso while

22

Individual Lasso is significantly worse. The models selected by L1/L1 are much more complex

than any other method. As in Setting 1, the two adaptive methods performed perfectly in terms

of accuracy, precision and recall, since they select the five true predictors exactly. Also, a-L1/L1

produces the best estimates in term of L2-loss. The study of the rankings, in part (b) of Table 2,

leads to the same observations except that a-L1/L2 and Full Lasso outperform a-L1/L1 on some

occasions in terms of test deviance or L2-loss.

Setting 3 – Within-feature sparsity

In multi-source insurance claim data, some predictors may not be relevant to all sources. For

example, property age may only help predict the property claim amount. Some information of the

same policyholders, such as credit history, however, may be relevant for both sources. The model

thus exhibits both within-feature and between-sources sparsity. We consider a scenario designed to

generate such a model to specifically test our L1/Lq(↵) regularization.

The setting is similar to Setting 2, except that we voluntarily set the coefficients of some true

generating variables to zero in certain sources:

(�2,�4,�8,�16,�32) =

2

666666664

2 0 2 2 0

0 2 2 0 0

2 0 0 0 0

2 2 0 0 2

0 2 0 2 2

3

777777775

, �j = 0, j 62 {2, 4, 8, 16, 32}.

Thus, the true model is sparse in terms of features (only five generating variables), but it is also sparse

within features since some of the true features do not generate the responses in certain sources.

Under Setting 2, we see that a-L1/L1 produces the best fit. In this setting, we compare Full

Lasso (which should not perform well) and Individual Lasso to a-L1/L1(↵) for different choices of

the mixing parameter ↵. The case ↵ = 0 is exactly a-L1/L1 and we also consider ↵ = 0.5, ↵ = 0.8

and ↵ = 1. We note that there is a small difference between Individual Lasso and the case ↵ = 1:

both models consider the same regularization, but the former selects a model through CV in each

source, while the latter selects a model through CV for all sources simultaneously.

Under this setting, the statistics of size, accuracy, precision and recall are calculated for each

component �(k)
j instead of the vectors �j . This means that the true model has size 3+3+2+2+2 =

12. Using this definition, we will see more clearly the effect of ↵ on the sparsity of the selected

23

Table 3: Results from Setting 3 with 100 replications. Part (a) shows the mean values of the

statistics and their standard errors in parentheses. Part (b) shows the mean rank across the five

models and, in parentheses, the number of times the model is best.

(a) Setting 3: Mean (standard error)

a-L1/L1(↵)

Full Lasso Ind. Lasso ↵ = 0 ↵ = 0.5 ↵ = 0.8 ↵ = 1

Test dev. 52,398 11,590 861 852 863 866
(5,830) (1,448) (9) (8) (10) (10)

Size 61.20 (5.52) 30.63 (0.55) 25.00 (0.00) 16.97 (0.20) 15.34 (0.18) 14.76 (0.17)

Accuracy 98.1 (0.2) 99.3 (0.0) 99.6 (0.0) 99.8 (0.0) 99.9 (0.0) 99.9 (0.0)
Precision 27.3 (2.4) 38.0 (0.5) 48.0 (0.0) 71.7 (0.9) 79.4 (1.0) 82.4 (1.0)
Recall 72.2 (3.0) 95.1 (1.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0) 100.0 (0.0)
L2 loss 5.99 (0.05) 2.73 (0.09) 0.38 (0.01) 0.34 (0.01) 0.36 (0.01) 0.36 (0.01)

(b) Setting 3: Mean rank (# of times best)

a-L1/L1(↵)

Full Lasso Ind. Lasso ↵ = 0 ↵ = 0.5 ↵ = 0.8 ↵ = 1

Test dev. 5.96 (0) 5.04 (0) 2.68 (31) 2.19 (31) 2.47 (15) 2.66 (23)

Size 4.82 (19) 5.10 (0) 4.37 (0) 2.89 (8) 1.68 (43) 1.23 (78)

Accuracy 5.56 (0) 5.15 (0) 4.19 (0) 2.68 (8) 1.52 (49) 1.08 (92)
Precision 5.42 (7) 5.14 (0) 4.19 (0) 2.75 (8) 1.59 (48) 1.15 (86)
Recall 4.27 (34) 2.14 (74) 1.00 (100) 1.00 (100) 1.00 (100) 1.00 (100)
L2 loss 6.00 (0) 5.00 (0) 2.87 (18) 2.00 (40) 2.41 (21) 2.72 (21)

model. The results from 100 replications are summarized in Table 3.

The lowest test deviance is achieved by a-L1/L1(↵) with ↵ = 0.5. It is not significantly better

than other values of the parameter, but clearly has improvement over the Full and Individual Lasso

for out-of-sample adjustment. We also observe a decrease in the size of the model as ↵ increases:

starting from 25 selected features with ↵ = 0 (i.e. five features selected in five sources since there is

no selection performed across sources) to less than 15 for ↵ = 1, closing in to the 12 generating

features. With perfect recall for all MStweedie algorithms, this means that with ↵ = 1 we achieve

the best accuracy and precision. Finally, the L2 loss being the smallest under ↵ = 0.5 means that its

extra selected features have coefficient estimates very close to 0 and that its coefficient estimates for

the true features are closer to the true values.

Setting 4 – Different datasets

To test how our algorithm behave under circumstances where some features are missing from certain

sources, we consider three simulation setups: (4A) some true generating variables are missing from

certain sources, (4B) some spurious variables are missing from certain sources, and (4C) both true

and spurious variables are missing from certain sources. For all cases, we generate data as in Setting

24

Table 4: Results from Setting 4 with 100 replications: values represent mean values of the

statistics and their standard errors in parentheses. The four parts respectively show the results

from Settings 2, 4A, 4B and 4C for comparison.

Setting 4: Mean (standard error)

(2) Complete data (4A) Missing true features

Full Lasso Ind. Lasso a-L1/L1 Full Lasso Ind. Lasso a-L1/L1

Test dev. 1,430 1,136,266 1,161 272,840 2,122,348 152,315
(142) (265,655) (129) (49,327) (839,704) (31,194)

Size 22.07 (0.76) 29.73 (1.44) 5.00 (0.00) 34.74 (2.83) 21.38 (1.33) 11.95 (0.44)

Accuracy 97.2 (0.1) 95.7 (0.2) 100.0 (0.0) 94.9 (0.5) 96.9 (0.2) 98.7 (0.1)
Precision 24.5 (0.6) 22.6 (2.0) 100.0 (0.0) 19.2 (1.3) 31.5 (2.7) 44.8 (1.8)
Recall 100.0 (0.0) 91.2 (2.5) 100.0 (0.0) 89.4 (1.4) 78.8 (3.5) 92.8 (1.5)
L2 loss 0.43 (0.03) 8.86 (0.07) 0.34 (0.01) 6.01 (0.13) 9.34 (0.04) 5.15 (0.08)

(4B) Missing spurious features (4C) Missing true and spurious features

Full Lasso Ind. Lasso a-L1/L1 Full Lasso Ind. Lasso a-L1/L1

Test dev. 1,376 1,119,800 1,164 245,761 2,116,184 119,081
(133) (265,508) (130) (46,198) (839,728) (18,616)

Size 19.53 (0.53) 29.77 (1.33) 5.00 (0.00) 31.25 (2.53) 21.49 (1.25) 11.60 (0.42)

Accuracy 97.6 (0.1) 95.8 (0.2) 100.0 (0.0) 95.5 (0.4) 96.9 (0.2) 98.8 (0.1)
Precision 27.4 (0.7) 22.1 (1.8) 100.0 (0.0) 21.1 (1.5) 29.9 (2.5) 46.4 (1.7)
Recall 100.0 (0.0) 94.4 (2.0) 100.0 (0.0) 90.4 (1.3) 80.8 (3.2) 94.6 (1.5)
L2 loss 0.41 (0.03) 8.79 (0.07) 0.34 (0.01) 5.99 (0.12) 9.33 (0.04) 5.09 (0.08)

2 with K = 5, nk = 300, p = 600 and the true variable indices are {2, 4, 8, 16, 32}. In Setting 4A,

we set to 0 column 32 for sources 1 and 2 and columns 16 and 32 of source 3. In Setting 4B, we set

to 0 the last 100 columns of sources 1 and 2 and the last 200 columns of source 3. In Setting 4C, we

consider the zero columns of Settings 4A and 4B simultaneously. For demonstration purposes, we

compare Full Lasso, Individual Lasso and a-L1/L1. The results over 100 replications are reported

in Table 4.

Under Setting 4A, where true variables are omitted in some sources, we find that a-L1/L1

clearly outperforms both Full Lasso and Individual Lasso under all criteria. As we would expect,

it does not achieve the same performance as when using the complete dataset (Setting 2) due to

removal of important features.

Under Setting 4B, where only spurious variables are removed from some sources, we do not

observe significant difference in any statistic compared to the models trained on the complete data.

Under Setting 4C, where both true and spurious variables are removed from some sources, we

observe similar behavior as in Setting 4A, with a-L1/L1 having slightly better performance. It

seems that both Full Lasso and a-L1/L1 are less inclined to overfit the spurious information when

it is missing from some sources.

25

Table 5: Description of the different parameters used in Setting 5.

Setting 5: Description of the scenarios

K p # of true variables % true variables nk

(a) 20 10⇥ 3i, i = 0, . . . , 5 10 – 300
(b) 20 10⇥ 3i, i = 0, . . . , 5 – 10% 300
(c) 5⇥ 2i, i = 0, . . . , 5 100 10 – 300
(d) 20 100 2i, i = 0, . . . , 5 – 300
(e) 5 50 10 – 5⇥ 4i, i = 0, . . . , 5
(f) 5 1000 10 – 30⇥ 2i, i = 0, . . . , 5

Setting 5 – Scalability study

Under the same construction of Setting 1, we conduct a short scalability study of the influence of the

number of covariates p, the number of sources K and sample sizes nk on the CPU time. We consider

different scenarios as shown in Table 5. The running times are averaged over 10 independent runs

and are used to compare the L1/L1 and L1/L2 regularizations to the Individual Lasso.

Figure 1 contains the plot of the average CPU time versus the variable of interest under the

four schemes considered. In parts (a) and (b), the running times of all three algorithms increase

at a similar linear rate. In part (c), we clearly see, as we would expect, that the running time of

individual regularization increases linearly with the number of sources. In contrast, the CPU times

of the two MStweedie algorithms increase faster than the linear rate and seem to diminish with K.

Note that the iteration complexity of the MStweedie algorithm is influenced by K mainly in the step

that requires Euclidean projections. For L1/L1 regularization, Condat (2016) pointed out that the

algorithm by Duchi et al. (2008) has expected and observed complexity O(K), but can be slower

(up to O(K2)) in sparse problems.

In part (d), we study the effect of sparsity by varying the proportion of true variables in the

model. For all three algorithms, we note a slight increase of the computing time when the proportion

increases. In parts (e) and (f), we look at the effect of the sample size nk in the cases nk > p and

nk < p respectively. A linear rate can be observed for both cases with the MStweedie algorithms. In

contrast, the Individual Lasso has CPU time increasing only sub-linearly when nk < p.

Overall, L1/L1 regularization is systematically slower than L1/L2 regularization by a multi-

plicative constant. Both MStweedie algorithms are slower than individual regularization only by a

multiplicative constant.

26

10 20 50 100 200 500 1000 2000

2
5

10
20

50
20

0
50

0

(a) K=20, 10 true variables

Nb. of variables (p)

C
PU

 ti
m

e
(s

)

Ind
L1 L∞
L1 L2

10 20 50 100 200 500 1000 2000

1
5

10
50

50
0

(b) K=20, 10% true variables

Nb. of variables (p)

C
PU

 ti
m

e
(s

)

Ind
L1 L∞
L1 L2

5 10 20 50 100

2
5

10
50

20
0

10
00

(c) p=100, 10 true variables

Nb. of tasks (K)

C
PU

 ti
m

e
(s

)

Ind
L1 L∞
L1 L2

1 2 5 10 20

5
10

20
50

(d) p=100, K=20

% of true variables

C
PU

 ti
m

e
(s

)

Ind
L1 L∞
L1 L2

1e+02 5e+02 5e+03 5e+04

5e
−0

1
5e

+0
0

5e
+0

1
5e

+0
2

(e) K=5, p=50, 10 true variables

Nb. of observations (nk)

C
PU

 ti
m

e
(s

)

Ind
L1 L∞
L1 L2

50 100 200 500 1000

2
5

10
20

(f) K=5, p=1000, 10 true variables

Nb. of observations (nk)

C
PU

 ti
m

e
(s

)

Ind
L1 L∞
L1 L2

Figure 1: Results from the scalability study under various conditions for synthetic data. The

dashed line represents what a linear relation between the CPU time and the variable of interest

would follow. All axes are in logarithmic scales.

27

Revoked

Not revoked

Auto Insurance Claims

Aggregate claim amount (x1000)

Fr
eq

ue
nc

y

0
10

00
20

00
30

00
40

00
50

00
60

00

0 5 10 15 20 25 30 35 40 45 50 55 60

Figure 2: Frequency of the aggregate claim amounts in the AutoClaim dataset according the

whether or not the policyholder’s license was revoked (defining the two sources).

Setting 6 – Correlated responses in

Upon the request of a referee, we also study the impact of having correlated responses on the

performance of our proposed algorithm. The simulation results show that all versions of our

algorithm significantly produce better test deviance and the two adaptive versions clearly beats all

other models. Due to limited space, we provide the simulation results in (Appendix E).

5.3. Real Data – Automobile Insurance Claims

We apply our algorithm to the analysis of a real dataset studied in Yip and Yau (2005) and Qian

et al. (2016). The dataset consists of many automobile insurance policy records and is available as

AutoClaim in the R package cplm (Zhang, 2011, 2013). A pre-processed version of the data is

also available in our R package. It contains the records of 10,296 policies of which 6,290 (61.1%)

have no claims. We are interested in predicting the aggregate claim loss of the policy using the 15

predictors (along with their necessary transformations) described in Table 6. We split the dataset

into two sources corresponding to potentially different types of driving license (according to whether

or not the policyholder had his or her license revoked.) Source 1 contains 9,036 policies of which

5,643 (62.5%) have no insurance claims and Source 2 contains 1,260 policies of which 646 (51.3%)

have no insurance claims. Figure 2 plots the histogram of the aggregate claims for both sources.

The following models are considered: the Full and Individual Lasso, and the MStweedie with

28

AutoClaim Dataset Variable Description

Variable Type Transformation Description

Response

CLM_AMT5 Numerical ⇥10�3 Aggregate claim loss of policy

Source identifier

REVOKED Categorical(2) 1/2 Whether the policyholder’s license was (2) revoked in

the past or (1) not

Predictors

KIDSDRIV Numerical – Number of child passengers

TRAVTIME Numerical – Commute time

CAR_USE Categorical(2) 1/2 (1) Private or (2) Commercial use

BLUEBOOK Numerical log Car value

NPOLICY Numerical – Number of policies

RED_CAR Categorical(2) 1/2 Whether the color of the car is (2) red or (1) not

MVR_PTS Numerical – Number of motor vehicle record points

AGE Numerical – Age of policyholder

HOMEKIDS Numerical – Number of children at home

GENDER Categorical(2) 1/2 Gender of policyholder: (2) male or (1) female

PARENT1 Categorical(2) 1/2 Whether (2) the policyholder grew up in a single-

parent family or (1) not

AREA Categorical(2) 1/2 (1) Rural or (2) urban area

CAR_TYPE Categorical(6) Dummy(5) Type of car: (base) Panel Truck, (2) Pickup, (3) Sedan,

(4) Sports Car, (5) SUV, (6) Van

JOBCLASS Categorical(9) Dummy(8) Job class of policyholder: (base) Unknown, (2) Blue

Collar, (3) Clerical, (4) Doctor, (5) Home Maker, (6)

Lawyer, (7) Manager, (8) Professional, (9) Student

MAX_EDUC Categorical(5) Dummy(4) Maximal level of education of policyholder: (base)

less than High School, (2) Bachelors, (3) High School,

(4) Masters, (5) PhD

Table 6: Description of the variables in the Auto insurance claim dataset.

29

both L1/L2(↵) and L1/L1(↵) regularizations as well as their adaptive counterparts under different

values of the mixing parameter ↵ 2 {0, 0.5, 0.8, 1}. We split the dataset into a training and a testing

set consisting respectively of two thirds and one third of the policies of each source. The ten-fold

CV is then performed to select the best model. Finally, we summarize the results by averaging them

over 100 replications of training/testing random partition.

The results of the study are reported in Table 7. In terms of model fit, we note that all adaptive

MStweedie methods perform very similarly while the non-adaptive procedures and the Individual

Lasso are slightly worse and the Full Lasso is the worst. In terms of model sparsity, the Individual

Lasso produces the simplest models on average followed by the adaptive MStweedie algorithms and

then the Full Lasso. The non-adaptive MStweedie algorithms yield models that have significantly

more variables.

Now, by looking at the exact variables selected within each source, we first see that MVR_PTS

and AREA are systematically included in every model except the Individual Lasso which does not

include AREA for source 2. When ↵ is non-zero, there is no major difference between the models

under different values of ↵, but they all behave as expected: for example, they select the variable

CAR_TYPE_4 (corresponding to “Sports Car”) only for source 2, corresponding to between-sources

sparsity that the ↵ = 0 method cannot uncover.

CV is used to select the optimal value of �. We plot the CV deviance as well as its standard error

along the sequence of � values and display the minimal value as well as the selected � according to

the one-standard-error rule in Figure 3. The figure also contains the plot of the norm of the estimated

coefficients for a-L1/L1. It provides an excellent example of why the one-standard-error rule is

often favored in practice: its selected model does not have a significantly different model fit than the

one minimizing the CV error, but it is considerably sparser.

Furthermore, to have a real data example that approaches more real-world situations, we artifi-

cially increase the proportion of zeros of the dataset by sub-sampling the non-zero responses. We

consider target proportions between 65% and 95% and remove enough non-zero claim amounts

observation from the dataset to reach the given proportion. The new datasets will be smaller in

size and the proportion of zeroes may differ between the two sources: the simple random sampling

ensures that the disproportion remains the same on average. Table 8 contains details on the new

datasets.

The same experimental methodology as with the original data is performed; Figure 4 contains

the normalized test deviance and model size, both averaged over 10 replications of the sampling,

30

Table 7: Test deviance, size of the selected model and selected variables under different regular-

ization schemes on the AutoClaim dataset. The results are averaged over 100 replications of the

training/testing splitting.

Auto Claims: Mean (standard error)

Algorithm Test Deviance Size Selected variables (# of times in source 1, in source 2)

Full Lasso 22203 (35) 5.32 (0.30) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(25,25),
MARRIED(14,14), PARENT1(6,6), KIDSDRIV(4,4),
CAR_TYPE_3(4,4), JOBCLASS_6(3,3), MAX_EDUC_3(3,3),
BLUEBOOK(2,2), JOBCLASS_3(2,2), JOBCLASS_4(2,2),
MAX_EDUC_5(1,1)

Ind. Lasso 19493 (33) 3.77 (0.11) MVR_PTS(100,100), AREA(100,36), CAR_TYPE_4(0,27),
CAR_USE(0,1), MARRIED(2,1), JOBCLASS_3(0,1),
JOBCLASS_6(1,1), MAX_EDUC_4(0,1), AGE_CAT_5(0,1)

L1/L1 19475 (32) 13.08 (0.63) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(98,98),
JOBCLASS_3(59,59), JOBCLASS_6(59,59), CAR_TYPE_5(33,33),
MARRIED(25,25), JOBCLASS_7(22,22), KIDSDRIV(21,21),
AGE_CAT_5(20,20), AGE_CAT_2(16,16), JOBCLASS_5(15,15),
CAR_USE(12,12), BLUEBOOK(10,10), CAR_TYPE_6(10,10),
MAX_EDUC_4(10,10), JOBCLASS_4(8,8), JOBCLASS_8(7,7),
RED_CAR(4,4), TRAVTIME(3,3), CAR_TYPE_2(3,3),
CAR_TYPE_3(3,3), MAX_EDUC_2(3,3), AGE_CAT_4(3,3),
PARENT1(2,2), MAX_EDUC_3(2,2), AGE_CAT_3(2,2),
NPOLICY(1,1), GENDER(1,1), JOBCLASS_2(1,1),
MAX_EDUC_5(1,1)

a-L1/L1(0) 19438 (32) 5.00 (0.12) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(45,45),
JOBCLASS_6(4,4), MARRIED(1,1)

a-L1/L1(0.5) 19437 (31) 4.31 (0.05) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(1,28),
MARRIED(0,1), JOBCLASS_6(0,1)

a-L1/L1(0.8) 19431 (32) 4.29 (0.05) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(1,26),
JOBCLASS_6(0,2)

a-L1/L1(1) 19431 (32) 4.29 (0.05) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(0,28),
JOBCLASS_6(0,1)

L1/L2 19456 (30) 9.86 (0.29) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(99,99),
JOBCLASS_3(50,50), JOBCLASS_6(44,44), CAR_TYPE_5(16,16),
JOBCLASS_7(16,16), JOBCLASS_5(12,12), AGE_CAT_5(11,11),
AGE_CAT_2(9,9), MAX_EDUC_4(8,8), CAR_USE(6,6),
MARRIED(6,6), BLUEBOOK(5,5), KIDSDRIV(2,2), RED_CAR(2,2),
GENDER(1,1), CAR_TYPE_3(1,1), CAR_TYPE_6(1,1),
JOBCLASS_4(1,1), JOBCLASS_8(1,1), MAX_EDUC_2(1,1),
AGE_CAT_4(1,1)

a-L1/L2(0) 19434 (31) 5.00 (0.11) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(48,48),
MARRIED(1,1), JOBCLASS_6(1,1)

a-L1/L2(0.5) 19442 (32) 4.61 (0.05) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(1,56),
JOBCLASS_6(0,2), MAX_EDUC_4(0,1), AGE_CAT_5(0,1)

a-L1/L2(0.8) 19432 (31) 4.68 (0.05) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(0,62),
JOBCLASS_6(0,4), MAX_EDUC_4(0,1), AGE_CAT_5(0,1)

a-L1/L2(1) 19428 (31) 4.72 (0.05) MVR_PTS(100,100), AREA(100,100), CAR_TYPE_4(0,66),
JOBCLASS_6(0,3), MARRIED(0,1), MAX_EDUC_4(0,1),
AGE_CAT_5(0,1)

31

−6 −5 −4 −3 −2 −1 0

56
00

60
00

64
00

(a) 10 folds CV train deviance

log(λ)

Tw
ee

di
e

D
ev

ia
nc

e

−6 −5 −4 −3 −2 −1 0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

(b) Solution path

log(λ)

C
oe

ffi
ci

en
ts

 N
or

m

MVR_PTS

AREA

Figure 3: MStweedie with adaptive L1/L1 regularization on AutoClaim data. Pane (a) shows

the plot of the ten-fold CV mean deviance (and its standard error) along the � sequence. Pane

(b) plots the norm of the estimates, ||�j ||1, along the � sequence. In each pane, the grey vertical

line indicates the � for which the CV deviance is minimal and the black vertical line indicates

the � value selected according to the one-standard-error rule.

AutoClaim: resampled datasets

Proportion of zeros

N Global Source 1 Source 2

10296 61.6 62.5 51.3

9677 65.0 66.3 55.5
8986 70.0 71.2 60.8
8387 75.0 76.1 66.5
7863 80.0 81.0 72.4
7400 85.0 85.8 78.9
6989 90.0 90.6 85.4
6622 95.0 95.2 92.8

Table 8: Number of observations and proportion of zeros in the whole dataset and within each

sources for the datasets sampled from the AutoClaim dataset to yield a target global proportion

of zeros.

32

60 65 70 75 80 85 90 95

4.
0

4.
5

5.
0

5.
5

6.
0

6.
5

(a) Test deviance

Proportion of zeros

60 65 70 75 80 85 90 95

2
4

6
8

10
12

(b) Size

Proportion of zeros
N

A

Full Lasso Independent Lasso a−L1 L∞(0.8) a−L1 L∞(1)

Figure 4: For the two base algorithms and the two best multi-source algorithms: (a) normalized

test deviance and (b) number of variables in the model, both averaged over 10 replications of

the sampling of the AutoClaim dataset to yield target global proportions of zeros. The error bars

represent one standard error around the mean.

of the two base algorithms and of a-L1/L1(↵) for ↵ 2 {0.8, 1}, which performed the best on the

original dataset. Uniformly over the range of proportion of zeros, our algorithm exhibit performance

similar or better than individual Lasso and significantly better than the Lasso on the complete dataset.

Except for a proportion of zeros of 95%, the adjustment to test data and the sparsity are essentially

the same between the multi-source algorithms and the independent Lasso. For a proportion of

95%, the multi-source algorithm produce significantly sparser models with very similar adjustment.

Hence, sharing information between sources for variable selection seem to allow the algorithm to

discard more efficiently faint signals from particular features.

5.4. Discussion – Choosing the Regularization

Before fitting the model, it is not obvious which regularization should be used. All simulations as

well as the real data example indicate that adaptive regularization should always be preferred to

increase the prediction, estimation and selection efficiency of our model. In our experiments, it

seems that L1/L1 performs better than L1/L2 when the coefficients are the same across tasks for a

same feature while the converse is true when the coefficients differ between sources. Additionally,

33

the sparse penalty only helps reduce the size of the model for variable selection (it does not improve

the fit) and it seems that most of the gain comes from relatively small ↵ values.

Hence, we can outline some general guideline in selecting the regularization. If the user suspect

that the coefficient will vary wildly between sources, then L1/L2 should be preferred while L1/L1

should be preferred when the coefficient are thought to be roughly the same. A sparse penalty never

seem to hurt, so using ↵ = 0.5 may uncover some additional sparsity. Nonetheless, it is difficult to

predict what the optimal solution would look like and it might be useful to study the results of a trial

run to tune the regularization of the real fit.

6. CONCLUSION

In this paper, we develop a unified algorithm for sparse learning of multi-source insurance data using

the MStweedie method. The Mstweedie-GPG algorithm we proposed cyclically updates each group

of coefficients via the proximal gradient descent scheme and enjoys fast convergence guarantee.

This procedure is embedded in a solution path algorithm in order to achieve the best balance between

goodness of fit and model sparsity.

Experiments on simulated data show that our approach clearly outperforms simpler methods in

prediction and selection accuracy. It is particularly effective for datasets having distinct structures

across the sources. The various regularization schemes behave as expected and thus provide

additional flexibility for our algorithm to allow user specification of the desired type of sparsity.

While our implementation scales well with the number of observations and variables in a dataset, we

caution that an increasing number of sources may slow down the calculation because of the increased

number of Euclidean projections required. When applied to real data constituted of aggregate claim

amount of the automobile insurance, our procedure convey similar messages to those from the

simulated experiments. We also note that although our approach is specifically designed for the

Tweedie model with actuarial applications, it is possible to develop similar algorithms for alternative

model choices.

In addition, though beyond the scope of our work, a promising approach is to use the multivariate

copula to account for the conditional correlation between data sources. For example, Shi (2016)

and Frees et al. (2018) propose multivariate Tweedie copula models, Czado et al. (2012) use a

copula on the frequency-severity pair of a single claim with Gamma severity (see also Shi and

Zhang, 2013 and Shi et al., 2015), and Frees et al. (2009) use a copula to jointly model a single

frequency with hierarchical Generalized Beta claim amounts (see also Frees and Valdez, 2008).

34

There is also work on joint modeling of multivariate claim counts (e.g., Bermúdez and Karlis, 2011;

Nikoloulopoulos, 2013; Shi and Valdez, 2014). See Frees et al. (2016) and many references therein

for a comprehensive review of multivariate insurance claim data modeling. Accordingly, variable

selection of multi-source data within a multivariate copula model framework can be a promising

topic and we leave it for further investigation.

Last but not least, we note that the Tweedie model has a wide range of applications well beyond

the scope of our presentation in this paper. Examples of non-negative valued data with excess zeros

can also be found in other actuarial settings (Tong et al., 2013; Frees et al., 2013, 2011a; Lauderdale,

2012), and in ecology (Blakey et al., 2016; Foster and Bravington, 2013; Zhang, 2011), fishery

(Ancelet et al., 2010; Shono, 2008), meteorology (Dunn, 2004; Smyth, 1996; Swan, 2006) and

health (Buu et al., 2011; Moger and Aalen, 2005; Smyth, 1996), to name a few. We hope that this

work builds new and useful research tool for many of these promising applications.

7. SUPPLEMENTARY MATERIALS

MSTweedie The R package implementing our proposed methods available at the address https:

//github.com/fontaine618/MSTweedie.

AutoClaim The dataset used in the real data experiment is available within MSTweedie package.

Appendices This appendix file contains additional numerical examples and results not shown in

the main article. (appendix.pdf)

35

https://github.com/fontaine618/MSTweedie
https://github.com/fontaine618/MSTweedie

References

Ancelet, S., Etienne, M.-P., Benoît, H. and Parent, E. (2010) Modelling spatial zero-inflated continuous data with an

exponentially compound poisson process. Environmental and Ecological Statistics, 17, 347–376. 6

Beck, A. and Teboulle, M. (2009) A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM

journal on imaging sciences, 2, 183–202. 3.1

Bermúdez, L. and Karlis, D. (2011) Bayesian multivariate poisson models for insurance ratemaking. Insurance:

Mathematics and Economics, 48, 226–236. 6, Appendix E

Blakey, R. V., Law, B. S., Kingsford, R. T., Stoklosa, J., Tap, P. and Williamson, K. (2016) Bat communities respond

positively to large-scale thinning of forest regrowth. Journal of Applied Ecology, 53, 1694–1703. 6

Buu, A., Johnson, N. J., Li, R. and Tan, X. (2011) New variable selection methods for zero-inflated count data with

applications to the substance abuse field. Statistics in medicine, 30, 2326–2340. 6

Chandler, R. E. and Bate, S. (2007) Inference for clustered data using the independence loglikelihood. Biometrika, 94,

167–183. 2.2

Condat, L. (2016) Fast projection onto the simplex and the\pmb {l} _\mathbf {1} ball. Mathematical Programming,

158, 575–585. 5.2

Czado, C., Kastenmeier, R., Brechmann, E. C. and Min, A. (2012) A mixed copula model for insurance claims and

claim sizes. Scandinavian Actuarial Journal, 2012, 278–305. 6

Duchi, J., Shalev-Shwartz, S., Singer, Y. and Chandra, T. (2008) Efficient projections onto the l 1-ball for learning in

high dimensions. In Proceedings of the 25th international conference on Machine learning, 272–279. ACM. 3.3, 5.2,

Appendix A, A1

Dunn, P. K. (2004) Occurrence and quantity of precipitation can be modelled simultaneously. International Journal of

Climatology, 24, 1231–1239. 6

Dunn, P. K. and Smyth, G. K. (2005) Series evaluation of tweedie exponential dispersion model densities. Statistics and

Computing, 15, 267–280. 2.2

Fawcett, T. (2006) An introduction to ROC analysis. Pattern Recognition Letters, 27, 861–874. 5.1

Foster, S. D. and Bravington, M. V. (2013) A poisson–gamma model for analysis of ecological non-negative continuous

data. Environmental and ecological statistics, 20, 533–552. 6

Frees, E. W., Bolancé, C., Guillen, M. and Valdez, E. (2018) Joint models of insurance lapsation and claims. arXiv

preprint arXiv:1810.04567. 6

Frees, E. W., Gao, J. and Rosenberg, M. A. (2011a) Predicting the frequency and amount of health care expenditures.

North American Actuarial Journal, 15, 377–392. 1, 6

Frees, E. W., Jin, X. and Lin, X. (2013) Actuarial applications of multivariate two-part regression models. Annals of

Actuarial Science, 7, 258–287. 6

Frees, E. W., Lee, G. and Yang, L. (2016) Multivariate frequency-severity regression models in insurance. Risks, 4, 4. 1,

6

Frees, E. W., Meyers, G. and Cummings, A. D. (2011b) Summarizing insurance scores using a gini index. Journal of

the American Statistical Association, 106, 1085–1098. 1

Frees, E. W., Shi, P. and Valdez, E. A. (2009) Actuarial applications of a hierarchical insurance claims model. ASTIN

36

Bulletin: The Journal of the IAA, 39, 165–197. 6

Frees, E. W. and Valdez, E. A. (2008) Hierarchical insurance claims modeling. Journal of the American Statistical

Association, 103, 1457–1469. 6

Friedman, J., Hastie, T. and Tibshirani, R. (2010) Regularization paths for generalized linear models via coordinate

descent. Journal of statistical software, 33, 1. 1, 3.2, 4.2

Gong, P., Ye, J. and Zhang, C. (2012) Robust multi-task feature learning. In Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery and data mining, 895–903. ACM. 5.2

Gu, Y., Zou, H. et al. (2016) High-dimensional generalizations of asymmetric least squares regression and their

applications. The Annals of Statistics, 44, 2661–2694. 5.2

Hastie, T., Tibshirani, R. and Friedman, J. (2009) The elements of statistical learning: Data mining, inference, and

prediction. Second Edition. Springer Series in Statistics. Springer. 4.1

Huang, J., Zhang, T. et al. (2010) The benefit of group sparsity. The Annals of Statistics, 38, 1978–2004. 1

Jenatton, R., Mairal, J., Bach, F. R. and Obozinski, G. R. (2010) Proximal methods for sparse hierarchical dictionary

learning. In Proceedings of the 27th international conference on machine learning (ICML-10), 487–494. 1, 3.4, 3.4

Jørgensen, B. (1987) Exponential dispersion models. Journal of the Royal Statistical Society. Series B (Methodological),

49, 127–162. 2.1

Kadkhodaie, M., Sanjabi, M. and Luo, Z.-Q. (2014) On the linear convergence of the approximate proximal splitting

method for non-smooth convex optimization. Journal of the Operations Research Society of China, 2, 123–141.

Appendix D

Kim, S. and Xing, E. P. (2012) Tree-guided group lasso for multi-response regression with structured sparsity, with an

application to eqtl mapping. The Annals of Applied Statistics, 6, 1095–1117. 1

Lauderdale, B. E. (2012) Compound poisson–gamma regression models for dollar outcomes that are sometimes zero.

Political Analysis, 20, 387–399. 6

Lounici, K., Pontil, M., Tsybakov, A. B. and Van De Geer, S. (2009) Taking advantage of sparsity in multi-task learning.

arXiv preprint arXiv:0903.1468. 1

Lounici, K., Pontil, M., Van De Geer, S., Tsybakov, A. B. et al. (2011) Oracle inequalities and optimal inference under

group sparsity. The Annals of Statistics, 39, 2164–2204. 1

Moger, T. A. and Aalen, O. O. (2005) A distribution for multivariate frailty based on the compound poisson distribution

with random scale. Lifetime data analysis, 11, 41–59. 6

Morales, J., Micchelli, C. A. and Pontil, M. (2010) A family of penalty functions for structured sparsity. In Advances in

Neural Information Processing Systems, 1612–1623. 1

Nikoloulopoulos, A. K. (2013) Copula-based models for multivariate discrete response data. In Copulae in Mathematical

and Quantitative Finance, 231–249. Springer. 6

Obozinski, G., Taskar, B. and Jordan, M. (2006) Multi-task feature selection. Statistics Department, UC Berkeley, Tech.

Rep, 2. 2.2

Obozinski, G., Taskar, B. and Jordan, M. I. (2010) Joint covariate selection and joint subspace selection for multiple

classification problems. Statistics and Computing, 20, 231–252. 1

Obozinski, G., Wainwright, M. J. and Jordan, M. I. (2008) Union support recovery in high-dimensional multivariate

regression. In Communication, Control, and Computing, 2008 46th Annual Allerton Conference on, 21–26. IEEE. 1

37

Parikh, N., Boyd, S. et al. (2014) Proximal algorithms. Foundations and Trends R� in Optimization, 1, 127–239.

Appendix A

Qian, W., Li, W., Sogawa, Y., Fujimaki, R., Yang, X. and Liu, J. (2018) An interactive greedy approach to group sparsity

in high dimensions. Technometrics, in press. 1

Qian, W., Yang, Y. and Zou, H. (2016) Tweedie’s compound poisson model with grouped elastic net. Journal of

Computational and Graphical Statistics, 25, 606–625. URL: http://dx.doi.org/10.1080/10618600.

2015.1005213. 1, 5.2, 5.3

Shi, P. (2016) Insurance ratemaking using a copula-based multivariate tweedie model. Scandinavian Actuarial Journal,

2016, 198–215. 1, 2.2, 6

Shi, P., Feng, X. and Boucher, J.-P. (2016) Multilevel modeling of insurance claims using copulas. The Annals of

Applied Statistics, 10, 834–863. 1

Shi, P., Feng, X. and Ivantsova, A. (2015) Dependent frequency–severity modeling of insurance claims. Insurance:

Mathematics and Economics, 64, 417–428. 1, 6

Shi, P. and Valdez, E. A. (2014) Multivariate negative binomial models for insurance claim counts. Insurance:

Mathematics and Economics, 55, 18–29. 6

Shi, P. and Zhang, W. (2013) Managed care and health care utilization: Specification of bivariate models using copulas.

North American Actuarial Journal, 17, 306–324. 6

Shono, H. (2008) Application of the tweedie distribution to zero-catch data in cpue analysis. Fisheries Research, 93,

154–162. 6

Simon, N., Friedman, J., Hastie, T. and Tibshirani, R. (2013) A sparse-group lasso. Journal of Computational and

Graphical Statistics, 22, 231–245. 1, 2.2

Smyth, G. K. (1996) Regression analysis of quantity data with exact zeros. In Proceedings of the second Australia–Japan

workshop on stochastic models in engineering, technology and management, 572–580. Citeseer. 6

Smyth, G. K. and Jørgensen, B. (2002) Fitting tweedie’s compound poisson model to insurance claims data: dispersion

modelling. ASTIN Bulletin: The Journal of the IAA, 32, 143–157. 1, 2.2

Swan, T. (2006) Generalized estimating equations when the response variable has a Tweedie distribution: An application

for multi-site rainfall modelling. Ph.D. Diss., University of Southern Queensland. 6

Tibshirani, R. (1996) Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B

(Methodological), 267–288. 1

Tibshirani, R., Bien, J., Friedman, J., Hastie, T., Simon, N., Taylor, J. and Tibshirani, R. J. (2012) Strong rules

for discarding predictors in lasso-type problems. Journal of the Royal Statistical Society: Series B (Statistical

Methodology), 74, 245–266. 4.2

Tong, E. N., Mues, C. and Thomas, L. (2013) A zero-adjusted gamma model for mortgage loan loss given default.

International Journal of Forecasting, 29, 548–562. 6

Turlach, B. A., Venables, W. N. and Wright, S. J. (2005) Simultaneous variable selection. Technometrics, 47, 349–363.

2.2

Tweedie, M. (1984) An index which distinguishes between some important exponential families. In Statistics: Appli-

cations and New Directions: Proc. Indian Statistical Institute Golden Jubilee International Conference, 579–604.

1

38

http://dx.doi.org/10.1080/10618600.2015.1005213
http://dx.doi.org/10.1080/10618600.2015.1005213

Varin, C., Reid, N. and Firth, D. (2011) An overview of composite likelihood methods. Statistica Sinica, 5–42. 2.2

Vincent, M. and Hansen, N. R. (2014) Sparse group lasso and high dimensional multinomial classification. Computa-

tional Statistics & Data Analysis, 71, 771–786. 1

Yang, Y., Qian, W. and Zou, H. (2017) Insurance premium prediction via gradient tree-boosted tweedie compound

poisson models. Journal of Business & Economic Statistics, 1–15. 2.2

Yip, K. C. and Yau, K. K. (2005) On modeling claim frequency data in general insurance with extra zeros. Insurance:

Mathematics and Economics, 36, 153–163. 1, 5.3

Yuan, M. and Lin, Y. (2006) Model selection and estimation in regression with grouped variables. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 68, 49–67. 2.2

Zhang, H., Jiang, J. and Luo, Z.-Q. (2013) On the linear convergence of a proximal gradient method for a class of

nonsmooth convex minimization problems. Journal of the Operations Research Society of China, 1, 163–186.

Appendix D

Zhang, H. H., Liu, Y., Wu, Y. and Zhu, J. (2008) Variable selection for the multicategory svm via adaptive sup-norm

regularization. Electronic Journal of Statistics, 2, 149–167. 1

Zhang, W. (2011) cplm: Monte carlo em algorithms and bayesian methods for fitting tweedie compound poisson linear

models. R package, http://cran.r-project.org/web/packages/cplm/index.html. 5.3, 6

Zhang, Y. (2013) Likelihood-based and bayesian methods for tweedie compound poisson linear mixed models. Statistics

and Computing, 23, 743–757. 1, 5.3

Zhao, P., Rocha, G. and Yu, B. (2009) The composite absolute penalties family for grouped and hierarchical variable

selection. The Annals of Statistics, 3468–3497. 2.2

Zou, H. (2006) The adaptive lasso and its oracle properties. Journal of the American statistical association, 101,

1418–1429. 1, 2.2, 4.3

39

http://cran.r-project.org/web/packages/cplm/index.html

