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Abstract

When estimating coefficients in a linear model, the (sparse) composite quantile regression was first proposed in Zou

and Yuan (2008) as an efficient alternative to the (sparse) least squares regardless of the error distribution. The highly

nonsmooth nature of the composite loss in the sparse composite quantile regression makes its theoretical analysis as

well as numerical computation much more challenging than the least squares method. The theory in Zou and Yuan

(2008) was proven under fixed-dimension asymptotics and the estimator was computed via linear programming. None

of these can be extended to ultrahigh dimensions. In this paper, we study the sparse composite quantile regression

under ultrahigh dimensionality and make three contributions. First, we provide a non-asymptotic analysis of both the

lasso and the folded concave penalized composite quantile regression, which reveals a practical way of achieving

the oracle estimator. Second, we construct a novel information criterion for selecting the regularization parameter

in the folded concave penalized composite quantile regression and prove its selection consistency. Third, we exploit

the structure of the composite loss and design a specialized optimization algorithm for computing the penalized

composite quantile regression via the alternating direction method of multipliers. We conduct extensive simulations

to illustrate the theoretical results. Our analysis provides a unified treatment of the concentration inequalities involving

the composite loss. Those inequalities could be of independent interest.

I. INTRODUCTION

Coefficient estimation in linear models is routinely done via the least squares (LS) regression. Under Gaussian

errors, the LS estimator has the likelihood interpretation and is most efficient. It is reasonably efficient under other

light-tailed error distributions besides Gaussian. When the error distribution is heavy-tailed, the LS estimator may

fail to be consistent. See numerical studies in Section VI for a clear demonstration. The quantile regression (QR,

[1]) can consistently estimate the coefficients of a linear model under very heavy-tailed errors, like a Student’s t

(with few degrees of freedom) or Cauchy. The robustness of the QR estimator, a property often mentioned in the

literature, comes from the fact that its asymptotic variance does not depend on the moments of the error distribution,

upon which that of the LS estimator relies, however. In terms of efficiency, it is well known that the asymptotic
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variance of a QR estimator is inversely proportional to (the square of) the error density evaluated at the true quantile

of the error distribution ([2], [3]). Thus, under certain errors, it is expected that the QR estimator is more efficient

than the LS estimator. Nevertheless, the quantile regression considers only one quantile at a time and may not fully

grasp the distributional information to always produce efficient estimation. To its extreme, when the error density at

a specified quantile approaches zero, the asymptotic variance of the corresponding QR estimator explodes to infinity,

which results in an estimator having arbitrarily small efficiency. As an example, under the mixture normal error
1
2 N(−3,1)+ 1

2 N(3,1), the least absolute deviation estimator is 1272.8 times less efficient than the LS estimator.

To safeguard quantile regression against potential efficiency loss, methods based on the idea of combining quantile

information across multiple levels have been proposed in the literature. The idea is natural: as more quantiles are

used, we have more distributional information to dispense and can hence obtain more efficient estimation if we do

it properly. One such approach named the composite quantile regression (CQR, [4], [5]) combines information over

different quantiles via a mix of quantile loss functions. It was shown by [4] that the CQR estimator is much more

(or arbitrarily more) efficient than the LS estimator under many heavy-tailed errors. Another notable approach by

[6] seeks an optimal weighting scheme to combine QR estimators at given levels to achieve as much efficiency

gain as possible. It was shown that as the number of quantiles increases, the asymptotic variance of their proposed

estimator achieves the Cramér–Rao lower bound under certain regularity conditions.

When considering fitting a sparse CQR model, it is natural to adopt the sparse penalties used in the sparse LS.

In [4], Zou and Yuan studied the sparse CQR using the adaptive lasso penalty [7] and proved its oracle properties

under fixed-dimension asymptotics. We note that the approach by [6] cannot be easily regularized to obtain desired

sparse solutions since their estimator is based on a weighted average of multiple estimators, each of whose sparsity

patterns may be different.

Given the favorable theoretical properties of CQR under fixed dimensions, we expect the sparse CQR to also

enjoy very competitive performance under the ultrahigh dimensional setting. However, there are few results in the

literature to firmly establish such a claim, despite the massive literature on the sparse LS under ultrahigh dimensions.

This is mainly caused by the severe nonsmoothness of the composite quantile loss. For example, even with a single

quantile, the analysis of the lasso penalized QR was only recently done in [8], and the analysis therein is technically

very different from the standard analysis for the least squares lasso. CQR uses the sum of many different quantile

losses and hence makes it even more challenging to handle than the single QR estimator. The highly nonsmooth

nature of the composite quantile loss is also a major obstacle for using standard algorithms for the penalized LS

as its numeric solvers. In fact, coordinate descent, the most popular algorithm thus far for solving the least squares

lasso, is not suitable for optimization problems involving a nonsmooth loss.

The contributions of this article are as follows. Firstly, we provide nonasymptotic analysis of both lasso and

folded concave penalized CQR. Our analysis holds for very general fixed pair (n, p). As (n, p) go to infinity, we

prove that the lasso estimator is estimation consistent under ultrahigh dimensions. Moreover, we show that the

lasso estimator is tuning free, meaning that the rate of convergence is achieved by using an explicit penalization

parameter. Secondly, we establish the oracle property for the folded concave penalized CQR and construct a new

information criterion for calibrating the tuning parameter therein to give consistent model selection. Our paper
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demonstrates a unified treatment of the concentration inequalities involving the CQR loss. Those inequalities could

be of independent interest to studies on other models involving the check loss. Lastly, we exploit the structure of the

composite quantile loss and design a specialized ADMM algorithm for efficiently computing the sparse penalized

CQR estimator. The results in this work make sparse CQR a real alternative to the sparse LS for real applications.

The rest of the article is organized as follows. In Section II, we introduce the framework for the penalized CQR,

followed by a discussion of the theoretical properties of the lasso and folded concave penalized CQR in Section III.

We propose a new information criterion for selecting the tuning parameter and investigate its selection consistency

in Section IV. In Section V, we present the efficient algorithm to solve the penalized CQR. Numerical studies are

conducted in Section VI to show the superior finite-sample performance of penalized CQR over penalized LS. All

proofs are relegated to Section VIII.

II. PENALIZED COMPOSITE QUANTILE REGRESSION

Consider variable selection and coefficient estimation in the linear model

y = β0 +
p

∑
j=1

x jβ j + ε, (1)

where ε is independent of x = (x1, . . . ,xp)
T. Suppose β ∗0 and β

∗ = (β ∗1 , . . . ,β
∗
p )

T are the true coefficients in model

(1) that generate our i.i.d. data (xi, yi)
n
i=1, where xi = (xi1, . . . ,xip)

T. Denote the response vector by y = (y1, . . . ,yn)
T

and the design matrix by X = (x1, . . . ,xn)
T. We also write X = (X1, . . . ,Xp), where X j = (x1 j, . . . ,xn j)

T,1≤ j ≤ p.

Let X = (X0,X) be the augmented design with X0 = 1n (corresponding to an intercept term), where 1n stands for

the n-dimensional vector of all ones.

As mentioned in Section I, we consider the CQR rather than the LS or QR to estimate β in model (1). Assume

that the random error ε has cumulative distribution function F(·) and probability density function f (·). To ensure

identifiability of β0, assume F(0) = 1/2. Given an ordered sequence of quantile levels τ1 < τ2 < · · ·< τK ∈ (0,1),

let α∗k = β ∗0 +F−1(τk), where F−1(τk) = inf{x : F(x)≥ τk} denotes the τk-th quantile of ε, 1≤ k≤K. The canonical

composite quantile regression estimates β by minimizing
K

∑
k=1

n

∑
i=1

ρτk(yi−αk−xT
i β ) (2)

jointly over α =(α1, . . . ,αK)∈RK and β ∈Rp, where ρτk(u)= {τk−I(u< 0)}u denotes the check loss for 1≤ k≤K.

A typical choice is to take equally spaced τk’s: τk = k/(K+1),1≤ k≤K. As K→∞, [4] showed that the asymptotic

efficiency of the CQR estimator relative to the LS estimator has a universal lower bound, 12var(ε){Eε f (ε)}2, which

is at least 70.26% for an arbitrary error distribution and can be made arbitrarily large for non-normal distributions.

The relative efficiency lower bound 0.7026 is further improved to 0.864 in [9]. Substantial efficiency gain can be

achieved already with a relatively small K such as K = 9 or 19.

In the high-dimensional regime, the number of parameters p is typically large and may even exceed the number

of observations n. Under the sparsity assumption on the model, assume that many components of β
∗ are zero. Let
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A = {1≤ j≤ p : β ∗j 6= 0} be the active set of β
∗ and denote the effective dimensionality of the model by s = |A |.

To harness the sparsity structure of β
∗, let us consider the sparse penalized CQR

min
α,β

1
nK

K

∑
k=1

n

∑
i=1

ρτk(yi−αk−xT
i β )+Pλ (β ), (3)

where Pλ (·) is a penalty function with regularization parameter λ . For instance, Pλ (·) can be the lasso [10], SCAD

[11], MCP [12], and so on. In [4], the adaptive lasso was used to show the oracle property of the corresponding

penalized estimator under fixed dimensions. The techniques used therein cannot be used to handle the ultrahigh

dimensionality setting. As for the computation, the adaptive lasso penalized CQR was formulated as a linear

program and was solved by a standard linear programming solver. However, such an approach does not scale well

with dimensions. Other efficient alternatives are needed when p is large.

III. ANALYSIS OF PENALIZED COMPOSITE QUANTILE REGRESSION

In this section, we show the theoretical properties of the penalized CQR under ultrahigh dimensionality with

both lasso and folded concave penalties. All our results are nonasymptotic and holds for general (n, p). From these

results, we establish the rate of convergence of the lasso penalized CQR and show its tuning free property. We also

estabish the strong oracle property for a feasible solution of the folded concave penalized CQR by incorporating

the lasso estimator as initial estimation. For ease of exposition, we introduce the following notation.

For u∈R, let u+ = uI(u> 0) and u−=−uI(u< 0) be the positive and negative parts of u, respectively. Moreover,

let sgn(u) = I(u > 0)− I(u < 0) be the sign function. The largest and smallest eigenvalues of a symmetric matrix

A are denoted by Λmax(A) and Λmin(A), respectively. We also let ∂g be the subdifferential of a convex function

g. For two matrices A1,A2 ∈Rm×n, let 〈A1, A2〉= tr(AT
1A2) be their trace inner product and ‖A1‖F = 〈A1, A1〉1/2

be the Frobenius norm of A1. For any vector v = (v1, . . . ,vp)
T ∈ Rp and an arbitrary index set I ⊂ {1, . . . , p}, we

write vI = (v j, j ∈ I)T and denote by XI = (X j, j ∈ I) the submatrix consisting of the columns of X whose indices

are in I. The complement of I is denoted by Ic = {1, . . . , p}\I. For q ∈ [1,∞], the Lq-norm of v is denoted by ‖v‖q.

A. Lasso penalized composite quantile regression

For λ > 0, we define the lasso penalized CQR estimator as

(α̂λ , β̂ λ ) := argmin
α,β

Qn(α,β )+λ

p

∑
j=1
|β j|, (4)

where Qn(α,β ) = (nK)−1
∑

K
k=1 ∑

n
i=1 ρτk(yi −αk − xT

i β ). In the sequel, we refer to (α̂λ , β̂ λ ) as the CQR lasso

estimator.

For ∆ ∈ Rp and integer m≥ 0, let A (∆,m)⊂A c be the support of the m largest in absolute value components

of ∆A c . When m = 0, we take A (∆,m) to be the empty set. The following assumption is imposed on the data and

error distribution, which is typical in the QR literature.

(C0). The observations (xi,yi)
n
i=1 are i.i.d. with min(n, p) ≥ 3. The density function is continuously differentiable

and satisfies f (u) ≤ f̄ < ∞ and f ′(u) ≤ f̄ ′ ∈ (0,∞) for all u in the support of ε. Moreover, there exists a
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constant U0 > 0 such that f (α∗k +u)≥
¯
f > 0 for all 1≤ k≤ K and |u| ≤U0. Also, (xiA ,yi)

n
i=1 are in general

positions (Section 2.2, [3]) and there is at least one continuous covariate in the true model.

Note that we do not impose any moment or light tail assumptions on the error distribution and the assumptions

on the error density are mild and can be satisfied by many commonly seen distributions, including heavy-tailed

distributions like Cauchy. We also assume that f̄ , f̄ ′ and
¯
f are all positive constants. The assumptions on (xiA ,yi)’s

ensure that the CQR oracle estimator (5) is unique. This is a fairly common assumption in the QR literature (see [3],

[13]). More discussions of the CQR oracle estimator can be found in Section III-B and Section B of the appendix.

We assume two additional conditions to establish the estimation consistency of the CQR lasso estimator, . For

the sake of brevity, only fixed design is considered. Define the restricted set C =
{
(δ ,∆) ∈ RK ×Rp : ‖∆A c‖1 ≤

3‖∆A ‖1 +
3
K ‖δ‖1

}
. The two assumptions are both imposed on the design matrix.

(C1). The design matrix X satisfies

κm = inf
(δ ,∆)∈C ,(δ ,∆)6=0

∑
K
k=1 ∑

n
i=1(δk +xT

i ∆)2

n(K‖∆A ∪A (∆,m)‖2
2 +‖δ‖2

2)
> 0.

(C2). The design matrix X satisfies

q =
3
8 ¯

f 3/2

f̄ ′
inf

(δ ,∆)∈C ,(δ ,∆)6=0

[
n−1

∑
n
i=1 ∑

K
k=1(δk +xT

i ∆)2
]3/2

n−1 ∑
n
i=1 ∑

K
k=1 |δk +xT

i ∆|3
> 0.

Condition (C1) is an extension of the restricted identifiability property (RIP), also known as the restricted

eigenvalue (RE) condition, to the case of the penalized CQR. RIP is a common assumption in the literature

for sparse penalized regressions. For example, it is assumed in the penalized LS, Dantzig selector [14], [15] and

penalized QR [8]. Condition (C2) is similar to the restricted nonlinearity assumption in [8]. The quantity q, referred

to as the restricted nonlinear impact (RNI) coefficient by those authors, describes how well the CQR empirical loss

function can be minorized by a quadratic function over the restricted set C . We present in the following theorem

the L2-risk bound for the CQR lasso estimator, from which the estimation consistency of the estimator follows.

Theorem 1. Under conditions (C0), (C1) and (C2), with probability at least 1− p1(λ ), where

p1(λ ) = 2K exp
(
−9nλ 2

2

)
+2pexp

(
− nλ 2

2M0

)
+ exp

{
−2M0

s(1+ log p)
κ0

}
,

the CQR lasso estimator (α̂λ , β̂ λ ) satisfies

‖α̂λ −α
∗‖2 ≤

8

¯
f

√
K
κm

{
32
√

2M0

κ0

√
1+ log p

n
(
√

s +1)+λ

√
s

κ0

}
and for integer m > 0,

‖β̂ λ −β
∗‖2 ≤

8

¯
f
√

κm

√
1+

18s
m

+
18
m

·

{
32
√

2M0

κ0

√
1+ log p

n
(
√

s +1)+λ

√
s

κ0

}
,

provided that the growth condition

64
√

2M0

κ0

√
1+ log p

n
(
√

s +1)+2λ

√
s

κ0
≤ q

√
¯
f
K
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holds, where M0 = max0≤ j≤p ‖X j‖2
2/n.

Remark 1. By Theorem 1, one can typically choose the tuning parameter λ = C
√

log p/n for the CQR lasso

estimator, where C >
√

2M0 is some constant. For example, one can choose C = 2
√

M0 . Note that given the design

X, M0 can be readily obtained. Therefore, in principle, the parameter λ in the lasso penalized CQR is tuning free.

This is in similar spirit to the square-root lasso [16]. With such choice of λ , we can see that p1(λ ) = O(1) as

n, p→ ∞, which leads to

‖β̂ λ −β
∗‖2 = OP

(
1

√
κ0κs

√
s log p

n

)
provided q−1

√
s log p/(nκ0) = O(1) and κ0(s log p)−1 = O(1), by taking m = s. When κ0 and κs are both positive

constants, the CQR lasso estimator achieves the near-optimal rate
√

s log p/n , which implies that it is a consistent

estimator even when p is of exponential order of n, i.e., log p =O(nγ) for some 0 < γ < 1, provided s log p = O(n).

B. Folded concave penalized composite quantile regression

Folded concave penalized regression has been widely adopted in the statistical analysis of high-dimensional data

due to its strong oracle optimality [17], [18]. In order to establish the oracle property of the folded concave penalized

CQR estimator, let us first define the CQR oracle estimator,

(α̂o, β̂
o
) := argmin

α,β : βA c=0

n

∑
i=1

K

∑
k=1

ρτk(yi−αk−xT
i β ). (5)

The oracle estimator (α̂o, β̂
o
) is the ideal estimator one could possibly get using the CQR. It is not feasible in

practice since A is unknown, but it serves as a benchmark estimator to which one can compare a penalized

CQR estimator. In the following lemma, we show the rate of convergence of the CQR oracle estimator under the

growing-dimension regime, i.e., the true dimensionality s is allowed to grow with n.

Let A0 = {0}∪A and XA0 = (1n,XA ). Denote
¯
µ = Λmin(n−1XT

A0
XA0) and µ̄ = Λmax(n−1XT

A0
XA0). Moreover,

let MA = max1≤i≤n(s+1)−1
(
1+‖xiA ‖2

2
)

and MA c = max1≤i≤n, j∈A c |xi j|. In this article, we assume that MA and

MA c are both positive constants.

Lemma 1. Under condition (C0), if 32K(s + 1)MA /(
√

n
¯
f

¯
µ) ≤ U0, with probability at least 1− exp

[
−(s +

1)MA /(2µ̄)
]
, the CQR oracle estimator satisfies

‖α̂o−α
∗‖2

2 +‖β̂
o
−β

∗‖2
2 ≤

1024K2(s+1)MA

n
¯
f 2

¯
µ2 .

Remark 2. Assuming s/(
¯
µ
√

n ) = O(1) and
¯
µ/s = O(1), the CQR oracle estimator has the following rate of

convergence

‖α̂o−α
∗‖2 = OP

(
1

¯
µ

√
s
n

)
, ‖β̂

o
−β

∗‖2 = OP

(
1

¯
µ

√
s
n

)
as n→ ∞. This implies that β̂

o
is
√

n/s -consistent when s diverges with n, if we assume that
¯
µ > 0 is a fixed

constant. Then it is required that s = O(nγ) for some 0 < γ < 1
2 .
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Next, we introduce the details of the folded concave penalized CQR and show that the CQR oracle estimator is

attainable via the folded concave penalized CQR. The folded concave penalized CQR at penalty level λ > 0 solves

the following minimization problem

min
α,β

Qn(α,β )+
p

∑
j=1

pλ (|β j|), (6)

where pλ (t), t ≥ 0 belongs to a class of folded concave penalties that satisfy the following properties:

(P1) pλ (t) is nondecreasing and concave in t ≥ 0 and pλ (0) = 0;

(P2) pλ (t) is differentiable in t > 0;

(P3) p′
λ
(t)≥ a1λ , 0 < t ≤ a2λ and p′

λ
(0) := p′

λ
(0+)≥ a1λ , where a1,a2 > 0 are fixed constants;

(P4) p′
λ
(t) = 0, t ≥ aλ for a fixed constant a > a2.

It can been shown that both the SCAD penalty and MCP belong to this class (see, e.g., [19]). For the analysis

of the minimizer, we consider the local linear approximation (LLA, [20]) algorithm, where the initial estimator is

chosen to be the CQR lasso estimator.

1) Initialize α and β with respectively α̂
(0) and β̂

(0)
. Compute weights

ŵ(0)
j = p′

λ
(|β̂ (0)

j |), j = 1, . . . , p.

2) For m = 1,2, . . . , repeat the LLA iterations in (2.a) and (2.b).

(2.a) Solve the following convex optimization problem for α̂
(m) and β̂

(m)

(α̂ (m), β̂
(m)

) := argmin
α,β

Qn(α,β )+
p

∑
j=1

ŵ(m−1)
j |β j|.

(2.b) Calculate the weights

ŵ(m)

j = p′
λ
(|β̂ (m)

j |), j = 1, . . . , p.

In order to establish the oracle property, we assume a “beta-min” condition, i.e., the true coefficient exhibit

sufficient signal:

(C3) min j∈A |β ∗j |> (a+1)λ .

The “beta-min” condition is always assumed for non-convexly penalized regressions and is almost a necessary

condition for establishing consistency results. See, e.g., [11], [13], [18].

Theorem 2. Suppose the folded concave penalized CQR (6) is solved with the LLA algorithm that is initialized with

the CQR lasso estimator (4) at penalty level λ0 = c
√

log p/n for some constant c >
√

2M0 . Let r0 = min j∈A |β ∗j |−

aλ and r∗ =
√
(s+1)MA logn/n . Assume the folded concave penalty pλ (·) satisfies properties (P1) – (P4), where

for integer m > 0, λ is taken such that

λ ≥ 8
a0

¯
f
√

κm

√
1+

18s
m

+
18
m

·

{
32
√

2M0

κ0

√
1+ log p

n
(
√

s +1)+λ0

√
s

κ0

}
.

(7)
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Under conditions (C0) – (C3) and the assumptions that r0
√
(s+1)MA ≤ U0, r∗

√
(s+1)MA ≤ U0 and λ >

8K(
¯
f

¯
µ)−1

√
(s+1)MA /n , with probability at least p0 = 1− p1(λ0)− p2(r0)− p2(r∗)− p3, the LLA algorithm

converges to the oracle estimator (α̂o, β̂
o
) in two iterations, where p1(·) is given in Theorem 1, p2(·) is defined as

p2(r) = exp
{
−n(t(r))2

32µ̄r2

}
, where t(r) = ¯

f
4K ¯

µr2−2r

√
(s+1)MA

n
,

and

p3 = 2(p− s)exp
(
−2nB2

M0

)
+2(p− s)n2(K+s) exp

(
− 3nB2

24 f̄ M2
A c µ̄1/2r∗+8MA cB

)
+2(p− s)n2(K+s) exp

(
−

3nB2
0

24 f̄ M2
A c(s+1)1/2M1/2

A n−2r∗+4MA c B0

)

with B = 1
2

[
a1λ − K+s

n MA c − f̄ MA c µ̄1/2r∗
]
+

and B0 =
[B

2 −
8 f̄ MA c

√
(s+1)MA

n2 r∗
]
+
.

It is easy to translate Theorem 2 into an asymptotic statement that the folded concave penalized CQR estimator

finds the oracle CQR estimator with overwhelming probability. For brevity, we omit such discussions. We emphasize

that unlike the lasso penalized CQR, the regularization parameter in the folded concave penalized CQR involves

unknown quantities. In order to apply Theorem 2 in applications, we need a data-driven choice of the regularization

parameter. To this end, we construct a new information criterion for selecting the tuning parameter in the next

section.

IV. TUNING PARAMETER CALIBRATION

For the folded concave penalized CQR, there exists a tuning sequence λn (we write λn here to signify its

dependence on n) such that the LLA algorithm yields the CQR oracle estimator in two iterations with probability

approaching one (Theorem 2). However, as we pointed out already, there is no direct way to use such λn as given

in Theorem 2, since it relies on unknown quantities. We thus pursue data-driven approach to the selection of λ .

Consider the following high-dimensional Bayesian information criterion:

BICH(λ ) =
1

nK

n

∑
i=1

K

∑
k=1

ρτk(yi− α̂
λ
k −xT

i β̂
λ )+ |Âλ |

Cn log(p)
n

, (8)

where (α̂λ , β̂
λ

) is the two-step estimator from the LLA algorithm initialized by the CQR lasso estimator with

regularization parameter λ0 (Theorem 2), Âλ = {1≤ j ≤ p : β̂ λ
j 6= 0} and Cn is a positive number depending on n

(allowed to grow with n). We compare the values of BICH(λ ) for λ ∈ Ξn = {λ : |Âλ | ≤ Jn}, where Jn > s represents

a rough estimate of the upper bound of the model sparsity and is allowed to (slowly) diverge as n→∞. Typically, Jn

is much smaller than p, so that one can avoid searching over a notoriously large model space. The tuning parameter

selected via BIC is given by

λ̂n = argmin
λ∈Ξn

BICH(λ ).

We call the information criterion BIC because it can be shown in the following Theorem that Pr(Â
λ̂n

= A )→ 1 as

n→ ∞. Note that model selection consistency is the signature property of BIC in the fixed-dimension setting.
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Let M = max1≤i≤n,0≤ j≤p |xi j| and assume M is a positive constant. Also, define

¯
ζ = inf

A⊃A ,|A|≤2Jn
Λmin(n−1(1n,XA)

T(1n,XA))

and

ζ̄ = sup
A⊃A ,|A|≤2Jn

Λmax(n−1(1n,XA)
T(1n,XA)),

and assume that both
¯
ζ and ζ̄ are positive constants, and so are κ0,κs,

¯
µ and µ̄ .

Theorem 3. Under the conditions of Theorem 2, and as n→ ∞, assuming that s = O(1),n = O(p),J2
n log p =

O(n),Cn → ∞ and
√

max(Jn,Cn) log p/n = O(min j∈A |β j|), the criterion BICH(λ ) is selection consistent, i.e.,

Pr(Â
λ̂n

= A )→ 1 as n→ ∞.

Remark 3. The sequence Cn is often taken to slowly diverge to infinity, e.g., Cn = log logn. Under fixed model

sparsity, s = O(1), it is implied from Theorem 3 that BICH(λ ) is consistent when log p = O(nγ1) and Jn = O(nγ2)

for some positive constants γ1 and γ2 such that γ1 +2γ2 < 1. It is worth mentioning that the fixed model sparsity

is assumed in order to achieve ultrahigh dimensionality due to technical difficulties with the check loss (see, e.g.,

[21]). If instead we allow the model sparsity to grow, using current technique, we must assume p can be of at most

polynomial order of n (see, e.g., [22]).

One problem with the criterion in (8) is that it is not scale invariant. In practice, one needs to standardize

the variables beforehand. Therefore, we also consider a scale invariant version of the high-dimensional Bayesian

information criterion:

BICHL(λ ) = log
(

1
K

n

∑
i=1

K

∑
k=1

ρτk(yi− α̂
λ
k −xT

i β̂
λ )

)
+ |Âλ |

Cn log(p)
n

. (9)

Theorem 4. In model (1), assume that E(|ε|)< ∞. Under the conditions of Theorem 2, as n→ ∞, assume more-

over that s = O(1),n = O(p),J2
n log p = O(n),Cn → ∞ and

√
max(Jn,Cn) log p/n = O(min j∈A |β j|). The criterion

BICHL(λ ) is selection consistent, i.e., Pr(Â
λ̂n

= A )→ 1 as n→ ∞.

Remark 4. The selection consistency of BICHL(λ ) requires additionally that E(|ε|) < ∞. Our empirical study in

Section VI suggests that this might be a necessary condition. Indeed, in the numerical comparison there, we see

that BICHL(λ ) does not perform well under the Cauchy error.

V. OPTIMIZATION

Note that both lasso and folded concave penalized CQR can be solved with one or more runs of the following

weighted lasso penalized CQR:

min
α,β

1
nK

K

∑
k=1

n

∑
i=1

ρτk(yi−αk−xT
i β )+λ1

p

∑
j=1

d j|β j|, (10)

where λ1 > 0 and d j ≥ 0 for j = 1, . . . , p. Specifically, the CQR lasso estimator can be achieved by letting d j = 1

for all j = 1, . . . , p, while the folded concave penalized CQR estimator can be obtained by iteratively solving (10)
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with d j = ŵ(m−1)
j in the mth LLA iteration. Hence, in the sequel, we only need to focus on developing the algorithm

for solving (10).

Traditionally, (10) can be solved by linear programming if n and p are moderate. However, linear programming

does not scale well when p is large [23]. We hence propose an efficient alternating direction method of multipliers

(ADMM) algorithm for solving (10). The algorithm is based on a reformulation that turns the original problem

into one that can harness the power of ADMM. We point out that there are multiple ways to formulate (10) into

problems that are solvable by ADMM. For instance, in a relevant context, two ADMM versions are proposed in [23]

to efficiently solve the penalized QR and they can be readily modified to solve (10). However, the formulation we

present here is different from the ideas in [23] and it results in a more stable ADMM algorithm. To elaborate on

our algorithm, let zik = yi−αk−xT
i β for i = 1, . . . ,n and k = 1, . . . ,K, and define matrix Z = (zik)n×K in terms of

the zik’s. By convexity, it can be immediately seen that (10) is equivalent to

minimize
1

nK

K

∑
k=1

n

∑
i=1

ρτk(zik)+λ1

p

∑
j=1

d j|γ j|

subject to Z = 1T
K⊗y−1n⊗α

T−1T
K⊗ (Xβ )

γ = β ,

(11)

where γ = (γ1, . . . ,γp)
T and ⊗ denotes the Kronecker product. As will be seen, the introduction of the γ j’s renders a

more stable ADMM algorithm where only the dual updates involve the non-smooth functions. For ease of notation,

let Y = 1K⊗y,ϕ = (αT,β T)T,

X1 =


1n · · · 0 X
...

. . .
...

...

0 · · · 1n X


(nK)×(p+K)

, and X2 = (Op×K Ip)p×(p+K).

Then, (11) can be equivalently written as

minimize
1

nK

K

∑
k=1

n

∑
i=1

ρτk(zik)+λ1

p

∑
j=1

d j|γ j|

subject to

 X1

−X2

ϕ +

vec(Z)

γ

=

Y

0

 ,

(12)

where vec stands for the vectorization operator that stacks the columns of a matrix one underneath the other to

form a single vector. The augmented Lagrangian of problem (12) is

Lσ (ϕ,Z,γ,U,v) :=
1

nK

K

∑
k=1

n

∑
i=1

ρτk(zik)+λ1

p

∑
j=1

d j|γ j|

+ 〈vec(U),vec(Z)+X1ϕ−Y〉+ 〈v,γ−X2ϕ〉

+
σ

2
‖vec(Z)+X1ϕ−Y‖2

F +
σ

2
‖γ−X2ϕ‖2

2,

(13)

where U = (uik)n×K and v = (v1, . . . ,vp)
T are the Lagrangian multipliers and σ > 0. Let ϕr,Zr,γr,Ur and vr be the

iterate after the rth iteration of the algorithm, where r ≥ 0. The ADMM has the following updates in the (r+1)st
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iteration 

ϕr+1 := argminϕ Lσ (ϕ,Zr,γr,Ur,vr),

(Zr+1,γr+1) := argminZ,γ Lσ (ϕ
r+1,Z,γ,Ur,vr),

vec(Ur+1) := vec(Ur)+σ{vec(Zr+1)+X1ϕr+1−Y},

vr+1 := vr +σ{γr+1−X2ϕr+1}.

(14)

It follows from (13) that

ϕ
r+1 =

1
σ
(XT

1X1 +XT
2X2)

−1{XT
1(σY−σvec(Zr)−vec(Ur))+XT

2(σγ
r +vr)}.

Note that

XT
1X1 +XT

2X2 =

 nIK 1K1T
nX

XT1n1T
K Ip +KXTX

 .

Let the Schur complement of nIK in the above matrix be

S = Ip +KXTX− 1
n
(XT1n1T

K)(1K1T
nX) = Ip +KXT

0X0,

where X0 = (In−n−11n1T
n)X is the centered design matrix. Then, we have

(XT
1X1 +XT

2X2)
−1 =

 1
n IK + 1

n2 1K1T
nXS−1XT1n1T

K − 1
n 1K1T

nXS−1

− 1
n S−1XT1n1T

K S−1

 .

When p is large, the computation of S−1 can be expensive. We can apply the Sherman–Morrison–Woodbury formula

to get

S−1 = Ip−KXT
0(In +KX0XT

0)
−1X0,

where we only need to evaluate the inverse of an n× n matrix. When n is relatively small compared to p, this

formula can be very helpful.

Remark 5. In the actual implementation, we often center the design matrix before fitting the model. Then, XT
1X1 +

XT
2X2 is block diagonal since XT1n = 0 and its inverse can be readily obtained.

The update of Zr+1 and γr+1 can be carried out component-wisely. This pertains to the application of the proximity

operator of the check loss ρτ(·) and the absolute value function | · |, respectively. For v ∈R, the proximity operator

of ρτ(·) with respect to a parameter a > 0 is defined as

Proxρτ
(v,a) := argmin

u∈R
ρτ(u)+

a
2
(u− v)2.

The following lemma gives the closed form expression of Proxρτ
.

Lemma 2. For v ∈R and a > 0, the proximity operator of the check loss ρτ(·) with respect to parameter a is given

by

Proxρτ
(v,a) = v−max

(
τ−1

a
, min

(
v,

τ

a

))
.
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Now by Lemma 2, we obtain

zr+1
ik = Proxρτk

(
yi−α

r+1
k −xT

i β
r+1−

ur
ik

σ
, nKσ

)
, 1≤ i≤ n, 1≤ k ≤ K.

The proximity operator of | · | is the soft-thresholding operator and thus

γ
r+1
j = Shrink

(
β

r+1
j −

vr
j

σ
,

λ1d j

σ

)
,

where Shrink(v,a) = sgn(v)(|v|−a)+.

We summarize the above ADMM algorithm in Algorithm 1. A discussion of the convergence criterion for this

algorithm can be found in the appendix.

Algorithm 1: The ADMM algorithm for solving the weighted lasso penalized composite quantile regression

1) Initialize the algorithm with (ϕ0,Z0,γ0,U0,v0), where ϕ0 = ((α0)T,(β 0)T)T.

2) For r = 0,1,2, . . . , repeat steps (2.1) – (2.3) until convergence.

(2.1) Update

ϕ
r+1 = ((αr+1)T,(β r+1)T)T← 1

σ
(XT

1X1 +XT
2X2)

−1

· {XT
1(σY−σvec(Zr)−vec(Ur))+XT

2(σγ
r +vr)}.

(2.2) Update

zr+1
ik ← Proxρτk

(
yi−α

r+1
k −xT

i β
r+1−

ur
ik

σ
,nKσ

)
,1≤ i≤ n,1≤ k ≤ K,

and

γ
r+1
j ← Shrink

(
β

r+1
j −

vr
j

σ
,

λ1d j

σ

)
,1≤ j ≤ p.

(2.3) Update

vec(Ur+1)← vec(Ur)+σ{vec(Zr+1)+X1ϕ
r+1−Y}

and

vr+1← vr +σ{γr+1−X2ϕ
r+1}.

VI. NUMERICAL EXPERIMENTS

We conduct Monte Carlo studies to assess the finite sample performance of the proposed method as well as the

tuning criterion. First, we compare the estimators from the penalized LS, the penalized CQR, the ideal oracle LS,

and the oracle CQR. Recall that the oracle estimators are obtained through applying the canonical LS and CQR

to the true underlying model. Second, we compare the tuned penalized CQR estimation by using cross-validation

(CV) and by using the proposed information criteria.

Our simulated data are from the linear model

y = β
∗
0 +xT

β
∗+ ε, (15)

where β ∗0 = 0 and β
∗ = (3,1.5,0,0,2,0p−5)

T. The covariates are drawn from the multivariate normal distribution,

x∼ Np(0,Σ), where two different covariance matrices Σ = (0.5|i− j|) and Σ = (0.8|i− j|) are considered. For the error

distribution, we refer to [4] and consider five different shapes:
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(a) the normal distribution, ε ∼ N(0,3);

(b) the mixture normal distribution (MN), ε ∼
√

6 × ε∗, where ε∗ ∼ 0.5N(0,1)+0.5N(0,0.56);

(c) the mixture double gamma distribution (MDG), ε ∼ 1
9 ε∗, where ε∗ ∼ f (ε) = e−14 · 1

2 e−|ε| + (1− e−14) ·
1

Γ(15) |ε|
14e−|ε|;

(d) the t-distribution with 3 degrees of freedom ε ∼ t3; and,

(e) the Cauchy distribution, ε ∼ Cauchy.

In the simulation study, our training data are composed of n observations (xi,yi)
n
i=1, independently generated from

model (15). An independent set of n observations is also simulated from the same model for parameter tuning of

the training model. We evaluate the variable selection performance of the estimated coefficients β̂ by the number of

false positives FP = |Â\A∗| and the number of false negatives FN = |A∗\Â|, where A∗ = {1≤ j ≤ p : β ∗j 6= 0} and

Â = {1≤ j ≤ p : β̂ j 6= 0}. The estimation accuracy of β̂ is measured by the model error (β̂ −β
∗)TΣ(β̂ −β

∗). Two

sets of data dimensions (n, p) = (100,600) and (n, p) = (200,1200) are used in our simulations. In all settings, we

use K = 19 quantile levels τk = 0.05k, k = 1, . . . ,19. The simulation results are summarized in Tables I and II.

It can be seen from the tables that the CQR oracle estimator has very similar model error to the LS estimator

under normal error, while is more efficient under the other error distributions. In particular, the model error of the

LS estimator explodes under the Cauchy error. In theory, it can be arbitrarily large. SCAD penalized CQR estimators

have very close model errors to the CQR oracle estimator under most error distributions and outperform the penalized

LS estimators. In terms of model selection accuracy, the SCAD penalized CQR estimator also outperform all the

other penalized estimators.

The comparison between CV, BICH and BICHL for tuning parameter selection is shown in Tables III and IV.

Note that BICHL does not perform well under the Cauchy error. This confirms its requirement for the first moment

of the error distribution. The information criterion is computationally more efficient than CV and also delivers better

results.

VII. DISCUSSION

In this article, we studied the sparse penalized CQR under various forms of regularization. In particular, we

established the estimation consistency of the CQR lasso estimator. Through the LLA algorithm, we showed that

the CQR oracle estimator could be achieved via folded concave penalized CQR. Our theoretical analysis remains

valid even when the dimensionality is ultrahigh in the sense that p = O(nν) with 0 < ν < 1
2 .

We also developed a fast and stable ADMM algorithm for solving the weighted L1-penalized CQR. Numerical

studies proved the efficiency of the algorithm. The methodologies and numerical solvers proposed in this article

make the sparse CQR a real alternative to the sparse LS in practice. It can be applied whenever the estimation

efficiency of the coefficients are concerned.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, OCTOBER 2019 14

TABLE I

SIMULATION RESULTS FOR THE NUMERICAL COMPARISON OF FOUR METHODS: LS-LASSO, LS-SCAD, CQR-LASSO AND CQR-SCAD,

UNDER MODEL (15) WITH n = 100 AND p = 600. THE LS-ORACLE AND CQR-ORACLE SERVE AS THE BENCHMARK. TWO COVARIANCE

STRUCTURES Σ = (0.5|i− j|) AND Σ = (0.8|i− j|) ARE SHOWN, UNDER EACH OF WHICH FIVE ERROR DISTRIBUTIONS ARE CONSIDERED:

N(0,3), MIXTURE NORMAL, MIXTURE DOUBLE GAMMA, t3 AND CAUCHY. THE ESTIMATION ACCURACY IS REPORTED AS “MODEL ERROR”

AND THE SELECTION ACCURACY IS REPORTED AS “FP, FN”. NUMBERS LISTED ARE AVERAGES OVER 100 INDEPENDENT RUNS, WITH

STANDARD ERRORS REPORTED IN THE PARENTHESES

N(0,3) MN MDG t3 Cauchy

Σ = (0.5|i− j|)

Model error LS-oracle 0.093 0.093 0.084 0.098 9350.072

(0.008) (0.007) (0.007) (0.009) (6837.507)

CQR-oracle 0.105 0.004 0.025 0.047 0.094

(0.008) (0.002) (0.003) (0.004) (0.011)

LS-lasso 0.664 0.620 0.588 0.663 18.963

(0.035) (0.025) (0.031) (0.054) (1.513)

LS-SCAD 0.671 0.646 0.523 0.578 31.738

(0.038) (0.036) (0.033) (0.036) (7.959)

CQR-lasso 0.792 0.272 0.465 0.374 1.672

(0.041) (0.029) (0.034) (0.022) (0.144)

CQR-SCAD 0.122 0.006 0.032 0.064 0.438

(0.019) (0.002) (0.004) (0.006) (0.098)

FP, FN LS-lasso 16.55, 0 16.91, 0 16.53, 0 15.83, 0 13.37, 1.79

(1.28), (0) (0.92), (0) (1.07), (0) (1.08), (0) (2.41), (0.12)

LS-SCAD 18.04, 0 18.00, 0 17.04, 0 16.81, 0 17.11, 1.78

(1.54), (0) (1.44), (0) (1.58), (0) (1.10), (0) (2.93), (0.13)

CQR-lasso 15.33, 0 15.29, 0 14.49, 0 12.89, 0 38.75, 0.01

(0.67), (0) (0.67), (0) (0.53), (0) (0.55), (0) (2.93), (0.01)

CQR-SCAD 1.68, 0.01 1.62, 0 2.27, 0 2.33, 0 2.18, 0.01

(0.25), (0.01) (0.29), (0) (0.32), (0) (0.34), (0) (0.38), (0.01)

Σ = (0.8|i− j|)

Model error LS-oracle 0.097 0.092 0.079 0.088 184.788

(0.008) (0.008) (0.006) (0.008) (91.476)

CQR-oracle 0.097 0.005 0.023 0.046 0.134

(0.008) (0.002) (0.002) (0.004) (0.011)

LS-lasso 0.488 0.493 0.441 0.422 19.649

(0.025) (0.028) (0.021) (0.031) (1.623)

LS-SCAD 0.524 0.443 0.422 0.442 27.706

(0.026) (0.020) (0.019) (0.029) (5.775)

CQR-lasso 0.498 0.152 0.259 0.269 0.993

(0.029) (0.023) (0.029) (0.014) (0.087)

CQR-SCAD 0.123 0.005 0.032 0.060 0.355

(0.013) (0.001) (0.003) (0.005) (0.055)

FP, FN LS-lasso 13.06, 0 12.34, 0 11.97, 0 13.59, 0 9.21, 1.60

(0.85), (0) (0.87), (0) (0.91), (0) (0.99), (0) (1.77), (0.11)

LS-SCAD 13.89, 0 11.97, 0 11.28, 0 14.04, 0 13.53, 1.62

(0.90), (0) (0.78), (0) (0.64), (0) (0.99), (0) (2.27), (0.11)

CQR-lasso 12.15, 0 13.28, 0 12.09, 0 13.06, 0 28.26, 0.03

(0.68), (0) (0.62), (0) (0.57), (0) (0.66), (0) (2.46), (0.02)

CQR-SCAD 2.09, 0.02 1.29, 0 1.83, 0 1.97, 0 2.38, 0.06

(0.40), (0.01) (0.24), (0) (0.32), (0) (0.30), (0) (0.32), (0.03)
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TABLE II

SIMULATION RESULTS FOR THE NUMERICAL COMPARISON OF FOUR METHODS: LS-LASSO, LS-SCAD, CQR-LASSO AND CQR-SCAD,

UNDER MODEL (15) WITH n = 200 AND p = 1200. THE LS-ORACLE AND CQR-ORACLE SERVE AS THE BENCHMARK. TWO COVARIANCE

STRUCTURES Σ = (0.5|i− j|) AND Σ = (0.8|i− j|) ARE SHOWN, UNDER EACH OF WHICH FIVE ERROR DISTRIBUTIONS ARE CONSIDERED:

N(0,3), MIXTURE NORMAL, MIXTURE DOUBLE GAMMA, t3 AND CAUCHY. THE ESTIMATION ACCURACY IS REPORTED AS “MODEL ERROR”

AND THE SELECTION ACCURACY IS REPORTED AS “FP, FN”. NUMBERS LISTED ARE AVERAGES OVER 100 INDEPENDENT RUNS, WITH

STANDARD ERRORS REPORTED IN THE PARENTHESES

N(0,3) MN MDG t3 Cauchy

Σ = (0.5|i− j|)

Model error LS-oracle 0.051 0.045 0.041 0.048 1136.066

(0.004) (0.004) (0.003) (0.004) (965.520)

CQR-oracle 0.047 0.001 0.011 0.023 0.060

(0.005) (0) (0.001) (0.002) (0.005)

LS-lasso 0.340 0.337 0.281 0.284 28.450

(0.015) (0.014) (0.011) (0.013) (7.987)

LS-SCAD 0.061 0.061 0.055 0.062 41.685

(0.006) (0.005) (0.005) (0.005) (24.654)

CQR-lasso 0.394 0.072 0.180 0.239 0.830

(0.018) (0.011) (0.014) (0.013) (0.073)

CQR-SCAD 0.046 0.001 0.011 0.023 0.137

(0.004) (0) (0.001) (0.002) (0.030)

FP, FN LS-lasso 19.62, 0 20.09, 0 20.15, 0 19.59, 0 21.41, 1.66

(1.41), (0) (1.25), (0) (1.22), (0) (1.27), (0) (3.94), (0.13)

LS-SCAD 5.24, 0 5.76, 0 4.56, 0 6.53, 0 25.49, 1.54

(1.08), (0) (0.94), (0) (0.92), (0) (1.10), (0) (4.01), (0.12)

CQR-lasso 18.76, 0 19.05, 0 19.11, 0 18.59, 0 60.56, 0

(0.95), (0) (0.77), (0) (0.78), (0) (0.95), (0) (6.35), (0)

CQR-SCAD 2.21, 0 2.29, 0 2.99, 0 2.31, 0 1.50, 0

(0.30), (0) (0.48), (0) (0.44), (0) (0.36), (0) (0.30), (0)

Σ = (0.8|i− j|)

Model error LS-oracle 0.042 0.047 0.034 0.046 71435.826

(0.004) (0.005) (0.003) (0.004) (68875.639)

CQR-oracle 0.049 0.001 0.011 0.022 0.055

(0.004) (0) (0.001) (0.002) (0.005)

LS-lasso 0.252 0.235 0.219 0.208 22.598

(0.012) (0.011) (0.009) (0.013) (2.334)

LS-SCAD 0.071 0.073 0.050 0.065 23.726

(0.006) (0.007) (0.004) (0.009) (2.856)

CQR-lasso 0.255 0.030 0.099 0.153 0.730

(0.014) (0.004) (0.008) (0.009) (0.070)

CQR-SCAD 0.086 0.001 0.023 0.048 0.539

(0.008) (0) (0.003) (0.004) (0.099)

FP, FN LS-lasso 14.83, 0 16.17, 0 15.24, 0 14.80, 0 20.44, 1.63

(1.03), (0) (1.1), (0) (1.09), (0) (1.23), (0) (3.83), (0.12)

LS-SCAD 6.36, 0 5.68, 0 5.64, 0 4.74, 0.01 15.22, 1.84

(0.99), (0) (0.72), (0) (0.83), (0) (0.76), (0.01) (2.92), (0.10)

CQR-lasso 16.86, 0 14.89, 0 15.83, 0 16.47, 0 42.75, 0

(1.02), (0) (0.7), (0) (0.78), (0) (0.98), (0) (4.13), (0)

CQR-SCAD 2.19, 0 1.93, 0 2.70, 0 2.59, 0 1.85, 0

(0.32), (0) (0.36), (0) (0.50), (0) (0.44), (0) (0.24), (0)
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TABLE III

SIMULATION RESULTS FOR NUMERICAL COMPARISON BETWEEN CV, BICH AND BICHL IN TERMS OF TUNING PARAMETER SELECTION,

UNDER MODEL (15) WITH n = 100 AND p = 600. TWO COVARIANCE STRUCTURES Σ = (0.5|i− j|) AND Σ = (0.8|i− j|) ARE SHOWN, UNDER

EACH OF WHICH FIVE ERROR DISTRIBUTIONS ARE CONSIDERED: N(0,3), MIXTURE NORMAL, MIXTURE DOUBLE GAMMA, t3 AND CAUCHY.

THE ESTIMATION ACCURACY IS REPORTED AS “MODEL ERROR” AND THE SELECTION ACCURACY IS REPORTED AS “FP, FN”. NUMBERS

LISTED ARE AVERAGES OVER 100 INDEPENDENT RUNS, WITH STANDARD ERRORS REPORTED IN THE PARENTHESES

N(0,3) MN MDG t3 Cauchy

Σ = (0.5|i− j|)

Model error CV 0.087 0.005 0.021 0.043 0.312

(0.008) (0.002) (0.002) (0.004) (0.083)

BICH 0.115 0.017 0.053 0.058 0.988

(0.019) (0.011) (0.017) (0.012) (0.374)

BICHL 0.094 0.003 0.022 0.048 6.287

(0.011) (0.001) (0.003) (0.004) (0.824)

FP, FN CV 0, 0 0, 0 0, 0 0, 0 0.01, 0.13

(0), (0) (0), (0) (0), (0) (0), (0) (0.01), (0.04)

BICH 0, 0.03 0, 0.01 0, 0.03 0, 0.01 0.01, 0.27

(0), (0.02) (0), (0.01) (0), (0.02) (0), (0.01) (0.01), (0.05)

BICHL 0, 0.01 0, 0 0, 0 0, 0 0, 1.17

(0), (0.01) (0), (0) (0), (0) (0), (0) (0), (0.09)

Σ = (0.8|i− j|)

Model error CV 0.273 0.008 0.088 0.118 0.718

(0.047) (0.003) (0.025) (0.025) (0.116)

BICH 0.393 0.077 0.200 0.295 2.169

(0.066) (0.035) (0.051) (0.059) (0.338)

BICHL 0.607 0.024 0.153 0.114 5.411

(0.091) (0.020) (0.043) (0.020) (0.517)

FP, FN CV 0, 0.07 0, 0 0.02, 0.02 0 , 0.01 0.1, 0.2

(0), (0.03) (0), (0) (0.02), (0.01) (0), (0.01) (0.03), (0.04)

BICH 0.01, 0.15 0, 0.04 0, 0.09 0, 0.12 0.14, 0.53

(0.01), (0.04) (0), (0.02) (0), (0.03) (0), (0.03) (0.06), (0.07)

BICHL 0.05, 0.23 0 , 0.01 0, 0.06 0, 0.01 0.12, 1.07

(0.02), (0.04) (0), (0.01) (0), (0.02) (0), (0.01) (0.04), (0.08)
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TABLE IV

SIMULATION RESULTS FOR NUMERICAL COMPARISON BETWEEN CV, BICH AND BICHL IN TERMS OF TUNING PARAMETER SELECTION,

UNDER MODEL (15) WITH n = 200 AND p = 1200. TWO COVARIANCE STRUCTURES Σ = (0.5|i− j|) AND Σ = (0.8|i− j|) ARE SHOWN, UNDER

EACH OF WHICH FIVE ERROR DISTRIBUTIONS ARE CONSIDERED: N(0,3), MIXTURE NORMAL, MIXTURE DOUBLE GAMMA, t3 AND CAUCHY.

THE ESTIMATION ACCURACY IS REPORTED AS “MODEL ERROR” AND THE SELECTION ACCURACY IS REPORTED AS “FP, FN”. NUMBERS

LISTED ARE AVERAGES OVER 100 INDEPENDENT RUNS, WITH STANDARD ERRORS REPORTED IN THE PARENTHESES

N(0,3) MN MDG t3 Cauchy

Σ = (0.5|i− j|)

Model error CV 0.121 0.006 0.026 0.043 0.477

(0.019) (0.002) (0.003) (0.006) (0.224)

BICH 0.041 0.001 0.012 0.020 0.915

(0.004) (0.000) (0.001) (0.002) (0.423)

BICHL 0.042 0.001 0.009 0.023 3.632

(0.004) (0.000) (0.001) (0.002) (0.757)

FP, FN CV 0, 0.02 0, 0 0, 0 0, 0 0.01, 0.11

(0), (0.01) (0), (0) (0), (0) (0), (0) (0.01), (0.04)

BICH 0, 0 0, 0 0, 0 0, 0 0.26, 0.05

(0), (0) (0), (0) (0), (0) (0), (0) (0.13), (0.03)

BICHL 0, 0 0, 0 0, 0 0, 0 0.01, 0.61

(0), (0) (0), (0) (0), (0) (0), (0) (0.01), (0.08)

Σ = (0.8|i− j|)

Model error CV 0.372 0.042 0.081 0.206 0.736

(0.059) (0.025) (0.023) (0.044) (0.141)

BICH 0.235 0.001 0.070 0.055 0.538

(0.05) (0.000) (0.03) (0.017) (0.086)

BICHL 0.132 0.002 0.019 0.041 3.28

(0.032) (0.001) (0.002) (0.004) (0.518)

FP, FN CV 0.01, 0.12 0, 0.02 0.01, 0.02 0, 0.06 0.05, 0.16

(0.01), (0.03) (0), (0.01) (0.01), (0.01) (0), (0.02) (0.02), (0.04)

BICH 0, 0.09 0, 0 0, 0.03 0, 0.01 0.21, 0.12

(0), (0.03) (0), (0) (0), (0.02) (0), (0.01) (0.06), (0.03)

BICHL 0, 0.03 0, 0 0, 0 0, 0 0.10, 0.55

(0), (0.02) (0), (0) (0), (0) (0), (0) (0.04), (0.07)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, OCTOBER 2019 18

VIII. PROOFS

We provide proofs of all previously stated results in this section. For the sake of brevity, some auxiliary results

are relegated to the appendix.

Assume without loss of generality β ∗0 = 0 such that α∗k =F−1(τk) for 1≤ k≤K. Also recall M0 =max0≤ j≤p ‖X j‖2
2/n

from Theorem 1.

Lemma 3. Under condition (C0), with probability at least

1−2K exp
(
−9

2
nλ

2
)
−2pexp

(
− nλ 2

2M0

)
,

the CQR lasso estimator (α̂λ , β̂ λ ) satisfies

(δ̂
λ

, ∆̂
λ

) ∈ C = {(δ ,∆) ∈ RK×Rp : ‖∆A c‖1 ≤ 3‖∆A ‖1 +
3
K ‖δ‖1},

where δ̂
λ

= α̂λ −α∗ and ∆̂
λ

= β̂ λ −β
∗.

Proof of Lemma 3. See Section A of the appendix.

Now let νn(α,β ) = Qn(α,β )−Qn(α
∗,β ∗)−E

[
Qn(α,β )−Qn(α

∗,β ∗)
]
. For r > 0, set Cr = {(δ ,∆)∈C : (nK)−1

∑
K
k=1 ∑

n
i=1(δk +xT

i ∆)2 ≤ r2} and define e(r) = sup(δ ,∆)∈Cr
|νn(α

∗+δ ,β ∗+∆)|.

Lemma 4. For r, t > 0, under conditions (C0) and (C1), with probability at least 1− exp
[
−nt2/(32r2)

]
, we have

e(r)≤ 16
√

2M0

κ0

√
1+ log p

n

(√
s +1

)
r+ t.

It follows immediately that, if one takes

t = 16
√

2M0

κ0

√
1+ log p

n

(√
s +1

)
r,

then with probability at least 1− exp
[
−2M0κ

−1
0 s(1+ log p)

]
, we have

e(r)≤ 32
√

2M0

κ0

√
1+ log p

n

(√
s +1

)
r.

Proof of Lemma 4. See Section A of the appendix.

Lemma 5. Under conditions (C0) and (C2), for any (δ ,∆) ∈ C , we have

E
[
Qn(α

∗+δ ,β ∗+∆)−Qn(α
∗,β ∗)

]
≥min

{
¯
f r2/4, q

(
¯
f/K

)1/2r
}
,

where r2 = (nK)−1
∑

n
i=1 ∑

K
k=1(δ k +xT

i ∆)2.

Proof of Lemma 5. See Section A of the appendix.

Proof of Theorem 1. Let

r∗ = 8
¯
f−1

[
32
√

2M0

κ0

√
1+ log p

n
(
√

s +1)+λ

√
s

κ0

]
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and set C ∗ = {(δ ,∆) ∈ C : (nK)−1
∑

n
i=1 ∑

K
k=1(δk +xT

i ∆)2 = r2
∗}. Moreover, define δ̂

λ

= α̂λ −α∗ and ∆̂
λ

= β̂ λ −β
∗.

Under event E1 = {(δ̂
λ

, ∆̂
λ

) ∈ C }, if

inf
(δ ,∆)∈C ∗

Qn(α
∗+δ ,β ∗+∆)−Qn(α

∗,β ∗)+λ (‖β ∗+∆‖1−‖β ∗‖1)> 0, (16)

then by convexity of Qn, this implies that (δ̂
λ

, ∆̂
λ

) ∈ Cr∗ . To show (16), first note that for all (δ ,∆) ∈ C ∗,

Qn(α
∗+δ ,β ∗+∆)−Qn(α

∗,β ∗)+λ (‖β ∗+∆‖1−‖β ∗‖1)

≥ E
[
Qn(α

∗+δ ,β ∗+∆)−Qn(α
∗,β ∗)

]
− e(r∗)

+λ
(
‖∆A c‖1−‖∆A ‖1

)
.

(17)

Now let E2 =
{

e(r∗)≤ 32
√

2M0(1+ log p)/(nκ0) (
√

s +1)r∗
}
. It follows from Lemma 4 that Pr(E2)≥ 1−exp

[
−2M0

κ
−1
0 s(1+ log p)

]
. By Lemma 5, for any (δ ,∆) ∈ C ∗, we have

E
[
Qn(α

∗+δ ,β ∗+∆)−Qn(α
∗,β ∗)

]
≥min

{
¯
f r2
∗/4, q(

¯
f/K)1/2r∗

}
.

Also, by condition (C1) and (A.5), for (δ ,∆) ∈ C ∗, we have ‖∆A ‖1 ≤ r∗
√

s/κ0 . Thus, under event E1 ∩E2, for

any (δ ,∆) ∈ C ∗, it follows from (17) and the growth condition that

Qn(α
∗+δ ,β ∗+∆)−Qn(α

∗,β ∗)+λ (‖β ∗+∆‖1−‖β ∗‖1)

≥ ¯
f
4

r2
∗−

[
32
√

2M0

κ0

√
1+ log p

n
(
√

s +1)+λ

√
s

κ0

]
r∗ > 0

by our choice of r∗. Therefore, by Lemma 3 and 4, with probability at least

Pr(E1∩E2)≥ 1−Pr(E c
1 )−Pr(E c

2 )≥ 1− p1(λ ),

we have (δ̂
λ

, ∆̂
λ

) ∈ Cr∗ . This, by condition (C1), further implies that

r2
∗ ≥

κm

K

[
‖δ̂ λ‖2

2 +K‖∆̂
λ

A ∪A (∆̂
λ
,m)
‖2

2

]
≥ κm

K
‖δ̂

λ

‖2
2 +κm‖∆̂

λ

A ∪A (∆̂
λ
,m)
‖2

2.

As a result, we obtain ‖δ̂
λ

‖2 ≤ r∗
√

K/κm and

‖∆̂
λ

A ∪A (∆̂
λ
,m)
‖2 ≤ r∗/

√
κm . (18)

Note that the jth largest in absolute value component of ∆̂A c is bounded by ‖∆̂A c‖1/ j. Therefore, it follows that∥∥∥∆̂
(A ∪A (∆̂

λ
,m))c

∥∥∥2

2
≤

p

∑
j=m+1

‖∆̂
λ

A c‖2
1

j2 ≤ 1
m
‖∆̂

λ

A c‖2
1

≤ 1
m

[
3‖∆̂

λ

A ‖1 +3K−1‖δ̂
λ

‖1
]2 ≤ 18s

m
‖∆̂

λ

A ‖2
2 +

18
mK
‖δ̂

λ

‖2
2

≤ 18s
m
‖∆̂

λ

A ∪A (∆̂
λ
,m)
‖2

2 +
18
mK
‖δ̂

λ

‖2
2,

which, together with (18), implies that

‖∆̂
λ

‖2
2 ≤

(
1+

18s
m

)
‖∆̂

λ

A ∪A (∆̂
λ
,m)
‖2

2 +
18
mK
‖δ̂

λ

‖2
2

≤ r2
∗

κm

(
1+

18s
m

+
18
m

)
.
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This completes the proof of Theorem 1.

For r > 0, define BA (r) = {(δ ,∆) ∈ RK ×Rp : ‖δ‖2
2 + ‖∆A ‖2

2 ≤ r2, ∆A c = 0} and SA (r) = {(δ ,∆) ∈ RK ×

Rp : ‖δ‖2
2 +‖∆A ‖2

2 = r2, ∆A c = 0}. Moreover, let z(r) = sup(δ ,∆)∈BA (r) |νn(α
∗+δ ,β ∗+∆)|.

Lemma 6. Under condition (C0), for any r, t > 0 such that r
√

(s+1)MA ≤ U0, with probability at least 1−

exp
[
−nt2/(32µ̄r2)

]
, we have

z(r)≤ 4r

√
(s+1)MA

n
+ t

and

inf
(δ ,∆)∈SA (r)

[
Qn(α

∗+δ ,β ∗+∆)−Qn(α
∗,β ∗)

]
≥ ¯

f
2K ¯

µr2−4r

√
(s+1)MA

n
− t.

Proof of Lemma 6. See Section A of the appendix.

Proof of Lemma 1. For ease of notation, let δ̂
o
= α̂

o−α∗ and ∆̂
o
= β̂

o
−β

∗. In Lemma 6, let r = r∗= 32K(
¯
f

¯
µ)−1×√

MA (s+1)/n and t = 4r∗
√

MA (s+1)/n . By assumption, with the choice of r∗, we have r∗
√

(s+1)MA ≤U0.

It follows immediately that with probability at least 1− exp
[
−(s+1)MA /(2µ̄)

]
, we have

inf
(δ ,∆)∈SA (r∗)

[
Qn(α

∗+δ ,β ∗+∆)−Qn(α
∗,β ∗)

]
≥ ¯

f
¯
µ(r∗)2

2K
−8r∗

√
(s+1)MA

n
> 0.

By convexity of Qn and optimality of (α̂o, β̂
o
), this implies that

‖δ̂
o
‖2

2 +‖∆̂
o
‖2

2 ≤ (r∗)2,

which completes the lemma.

Lemma 7. Suppose the folded concave penalized CQR (6) is solved with the LLA algorithm. Let a0 = min(a2,1)

and define

E1 = {‖β̂
(0)
−β

∗‖∞ ≤ a0λ},

E2 = {‖∇A cQn(α̂
o, β̂

o
)‖∞ < a1λ},

E3 =
{

min
j∈A
|β̂ o

j |> aλ

}
,

where ∇A cQn(α̂
o, β̂

o
) =

(
∇ jQn(α̂

o, β̂
o
), j ∈A c

)
with

∇ jQn(α̂
o, β̂

o
) =

1
2n

n

∑
i=1

xi j

(
1− 2

K

K

∑
k=1

τk

)
− 1

2nK

n

∑
i=1

K

∑
k=1

Sgn(r̂ik)xi j,

r̂ik = yi− α̂o
k −xT

i β̂
o
, 1≤ i≤ n, 1≤ k ≤ K, and

Sgn(u) =


1, if u > 0

[−1,1], if u = 0

−1, if u < 0.

Then under E1∩E2∩E3 and condition (C0), the LLA algorithm converges to the CQR oracle estimator.

Proof of Lemma 7. See Section A of the appendix.
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For each j ∈A c, define Sn
j(α,β ) = 1

nK ∑
n
i=1 ∑

K
k=1
[
I(yi−αk−xT

i β ≤ 0)− τk
]
xi j, and for r > 0, let

γ j(r) = sup
(δ ,∆)∈BA (r)

∣∣Sn
j(α
∗+δ ,β ∗+∆)−Sn

j(α
∗,β ∗)

−E
[
Sn

j(α
∗+δ ,β ∗+∆)−Sn

j(α
∗,β ∗)

]∣∣.
Lemma 8. For r, t > 0, 0 < ψ < r and j ∈A c, under condition (C0) we have

Pr(γ j(r)> t)≤ 2Nψ exp
(
− nt2

8 f̄ M2
A c µ̄1/2r+ 8

3 MA ct

)
+2Nψ exp

(
−

nt2
0

2 f̄ M2
A c

(
(s+1)MA

)1/2
ψ + 4

3 MA ct0

)
,

where Nψ is the ψ-covering number (see, e.g., [24]) of BA (r) and t0 =
[
t/2−2 f̄ MA c

(
(s+1)MA

)1/2
ψ
]
+
.

Proof of Lemma 8. See Section A of the appendix.

Proof of Theorem 2. Let δ̂
o
= α̂

o−α∗ and ∆̂
o
= β̂

o
−β

∗. For 1≤ i≤ n, 1≤ k≤ K, write r̂ik = yi− α̂o
k −xT

i β̂
o

and

r∗ik = yi−α∗k − xT
i β
∗. For ease of notation, let F(δ ,∆) = Qn(α

∗+ δ ,β ∗+∆)−Qn(α
∗,β ∗) for (δ ,∆) ∈ RK ×Rp.

According to Lemma 7, with probability at least

Pr(E1∩E2∩E3)≥ 1−Pr(E c
1 )−Pr(E c

2 )−Pr(E c
3 ),

the LLA algorithm will converge to the oracle estimator in two iterations. In the sequel, we will split the proof into

three parts and provide the upper bound on each of Pr(E c
1 ), Pr(E c

2 ) and Pr(E c
3 ), separately.

(i) First, we deal with Pr(E c
1 ) = Pr(‖β̂

(0)
−β

∗‖∞ > a0λ ). Since in the LLA algorithm, we take (α̂ (0), β̂
(0)
) to be

the lasso estimator (α̂λ0 , β̂ λ0
), by Theorem 1, we have

Pr(E1) = Pr
(
‖β̂ λ0

−β
∗‖∞ ≤ a0λ

)
≥ Pr

(
‖β̂ λ0

−β
∗‖2 ≤ a0λ

)
≥ 1− p1(λ0),

which implies that Pr(E c
1 )≤ p1(λ0).

(ii) We next derive the upper bound on Pr(E c
3 ) = Pr

(
min j∈A |β̂ o

j | ≤ aλ
)
. Let r0 = min j∈A |β ∗j | − aλ . It can

be seen that Pr(E c
3 ) ≤ Pr(‖∆̂

o
‖∞ > r0). Note that by convexity of Qn, ‖∆̂

o
‖2 ≤ r0 is implied by the event that

inf(δ ,∆)∈SA (r0) F(δ ,∆)> 0. Since r0
√

(s+1)MA ≤U0, it follows from Lemma 6 that for any t > 0,

inf
(δ ,∆)∈SA (r0)

F(δ ,∆)≥ ¯
f

2K ¯
µr2

0−4r0

√
(s+1)MA

n
− t

holds with probability at least 1−exp
[
−nt2/(32µ̄r2

0)
]
. By condition (C3), it can be seen that r0 > λ > 8K(

¯
f

¯
µ)−1×√

(s+1)MA /n . Now take t =
¯
f

¯
µr2

0/(4K)−2r0
√
(s+1)MA /n . Then, we can see that t > 0. It follows immediately

that inf(δ ,∆)∈SA (r0) F(δ ,∆)≥ t > 0. With this specific choice of t, we get

Pr
(
‖∆̂

o
‖2 ≤ r0

)
≥ 1− exp

[
−nt2/(32µ̄r2

0)
]
,

which implies that

Pr(E c
3 )≤ Pr(‖∆̂

o
‖∞ > r0)≤ Pr(‖∆̂

o
‖2 > r0)≤ exp

[
−nt2/(32µ̄r2

0)
]
.
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(iii) Finally, we look at Pr(E c
2 ) = Pr(‖∇A cQn(α̂

o, β̂
o
)‖∞ ≥ a1λ ). To this end, we set r∗ =

√
(s+1)MA logn/n

and let R = {(i,k) : r̂ik = 0, 1≤ i≤ n, 1≤ k≤K} be the index set of zero residuals. From Section B of the appendix,

we have |R| ≤ K(K + s). It follows that

∇ jQn(α̂
o, β̂

o
) =

1
2nK

n

∑
i=1

K

∑
k=1

[
(1−2τk)−Sgn(r̂ik)

]
xi j

=
1

nK

n

∑
i=1

K

∑
k=1

[
I(r̂ik ≤ 0)− τk

]
xi j−

1
2nK ∑

(i,k)∈R

[
Sgn(r̂ik)+1

]
xi j,

where we have

max
j∈A c

∣∣∣∣ 1
2nK ∑

(i,k)∈R

[
Sgn(r̂ik)+1

]
xi j

∣∣∣∣≤ (K + s)MA c

n
:= B1.

Now define event E0 = {(δ̂
o
, ∆̂

o
) ∈ BA (r∗)}. Under E0, by the triangular inequality, we have

max
j∈A c

∣∣∣∣ 1
nK

n

∑
i=1

K

∑
k=1

[
I(r̂ik ≤ 0)− τk

]
xi j

∣∣∣∣≤ max
j∈A c

γ j(r∗)+ max
j∈A c
|Sn

j(α
∗,β ∗)|

+ max
j∈A c

sup
(δ ,∆)∈BA (r∗)

∣∣∣E[Sn
j(α
∗+δ ,β ∗+∆)−Sn

j(α
∗,β ∗)

]∣∣∣.
By the mean value theorem, it can be seen that

max
j∈A c

sup
(δ ,∆)∈BA (r∗)

∣∣∣E[Sn
j(α
∗+δ ,β ∗+∆)−Sn

j(α
∗,β ∗)

∣∣∣
≤ 1

nK
f̄ MA c sup

(δ ,∆)∈BA (r∗)

n

∑
i=1

K

∑
k=1
|δk +xT

iA ∆A | ≤ f̄ MA c µ̄
1/2r∗ := B2.

Note that if B≥ 0, then 2B = a1λ −B1−B2. It follows that

Pr(E c
2 )≤ Pr

(
(δ̂

o
, ∆̂

o
) /∈ BA (r∗)

)
+Pr

(
max
i∈A c

γ j(r∗)≥ B
)

+Pr
(

max
j∈A c
|Sn

j(α
∗,β ∗)| ≥ B

)
.

Note that r∗
√

(s+1)MA ≤U0. By similar arguments in (ii), it can be shown that

Pr
(
(δ̂

o
, ∆̂

o
) /∈ BA (r∗)

)
≤ exp

(
− nt2

∗
32µ̄r2

∗

)
,

where t∗ =
¯
f

¯
µr2
∗/(4K)−2r∗

√
(s+1)MA /n . Applying Hoeffding’s inequality, we obtain

Pr
(

max
j∈A c
|Sn

j(α
∗,β ∗)| ≥ B

)
≤ 2(p− s)exp

(
−2nB2

M0

)
.

Lastly, we apply Lemma 8 to obtain the bound on Pr
(

max j∈A c γ j(r∗)≥ B
)
. Let ψ = 4r∗/n2. It can be shown that

the ψ-covering number of BA (r∗) satisfies( r∗
ψ

)K+s
≤ Nψ ≤

(2r∗+ψ

ψ

)K+s
≤ n2(K+s), n≥ 2.

By Lemma 8, we have

Pr
(

max
j∈A c

γ j(r∗)≥ B
)
≤ 2(p− s)Nψ exp

(
− nB2

8 f̄ M2
A c µ̄1/2r∗+ 8

3 MA c B

)
+2(p− s)Nψ exp

(
−

nB2
0

2 f̄ M2
A c

(
(s+1)MA

)1/2
ψ + 4

3 MA cB0

)
,
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where B0 =
[
B/2−2 f̄ MA c

(
(s+1)MA

)1/2
ψ
]
+
. This completes the proof.

Lemma 9. For any A ∈ {S : S ⊃ A , |S| ≤ 2Jn} and r, t > 0, let z(A,r) = sup(δ ,∆)∈BA(r) |νn(α
∗+ δ ,β ∗+∆)|. With

probability at least 1− exp{−nt2/(32ζ̄ r2)}, we have

z(A,r)≤ 4Mr

√
|A|+1

n
+ t.

Proof of Lemma 9. See Section A of the appendix.

Proof of Theorem 3. Split all models (denoted by their index sets) under consideration, {Âλ : λ ∈ Ξn}, into three

groups: {Âλ : λ ∈ Ξ−n }, {Âλ : λ ∈ Ξ0
n}, and {Âλ : λ ∈ Ξ+

n }, where Ξ−n = {λ ∈ Ξn : A 6⊂ Âλ} (underfitted models),

Ξ0
n = {λ ∈ Ξn : Âλ = A } and Ξ+

n = {λ ∈ Ξn : A ⊂ Âλ , Âλ 6= A } (overfitted models). The proof then boils down to

show that P
(

inf
λ∈Ξ

−
n
[BICH(λ )−BICH(λn)]> 0

)
→ 1 and P

(
inf

λ∈Ξ
+
n
[BICH(λ )−BICH(λn)]> 0

)
→ 1 as n→ ∞.

Note that BIC contains both a goodness-of-fit part and a model complexity part. The basic idea is to show that

for underfitted models, the goodness-of-fit part dominates, while for overfitted models, the model complexity part

dominates.

Let Q̂λ
n = (nK)−1

∑
n
i=1 ∑

K
k=1 ρτk(yi− α̂λ

k − xT
i β̂

λ ), where (α̂λ , β̂
λ

) is the two-step LLA estimator to the folded

concave penalized CQR (6) with lasso initialization. Also, let Q∗n = (nK)−1
∑

n
i=1 ∑

K
k=1 ρτk(yi−α∗k −xT

i β
∗). For any

A⊂ {1,2, . . . , p}, let (α̂A, β̂
A
) be the estimator obtained by fitting the canonical CQR to model A, i.e.,

(α̂A, β̂
A
) = argmin

α,β :β Ac=0

1
nK

n

∑
i=1

K

∑
k=1

ρτk(yi−αk−xT
i β ). (19)

Define Q̂A
n = (nK)−1

∑
n
i=1 ∑

K
k=1 ρτk(yi− α̂A

k −xT
i β̂

A). For any λ ∈ Ξn, recall that Âλ = {1 ≤ j ≤ p : β̂ λ
j 6= 0} corre-

sponds to the active set of the two-step LLA estimator (α̂λ , β̂
λ

). By optimality of (α̂ Âλ , β̂
Âλ

) in (39), we have

Q̂Âλ
n ≤ Q̂λ

n .

Let G +
n = {A : A ⊃ A ,A 6= A , |A| ≤ Jn}. It can be seen that {Âλ : λ ∈ Ξ+

n } ⊂ G +
n . For r > 0 and A ∈ G +

n , let

BA(r) = {(δ ,∆)∈RK×Rp : ‖δ‖2+‖∆A‖2 ≤ r2,∆Ac = 0} and SA(r) = {(δ ,∆)∈RK×Rp : ‖δ‖2+‖∆A‖2 = r2,∆Ac =

0}.

Case I: overfitted models. By Theorem 2, under the assumptions of this theorem, we have

P(Âλn 6= A )→ O(1) as n→ ∞.

Therefore, for any λ ∈ Ξ+
n , we have

Pr
(

inf
λ∈Ξ

+
n

[BICH(λ )−BICH(λn)]> 0
)

= Pr
(

inf
λ∈Ξ

+
n

[BICH(λ )−BICH(λn)]> 0, Âλn = A

)
+Pr

(
inf

λ∈Ξ
+
n

[BICH(λ )−BICH(λn)]> 0, Âλn 6= A

)
= Pr

(
inf

λ∈Ξ
+
n

[
(Q̂λ

n − Q̂A
n )+(|Âλ |− s)

Cn log(p)
n

]
> 0
)
+O(1)

≥ Pr
(

inf
λ∈Ξ

+
n

[
(Q̂Âλ

n − Q̂A
n )+(|Âλ |− s)

Cn log(p)
n

]
> 0
)
+O(1),
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where the last inequality follows from the fact that Q̂λ
n ≥ Q̂Âλ

n . Moreover, note that Q̂Âλ
n ≤ Q̂A

n ≤Q∗n due to inclusion

A ⊂ Âλ .

Let F(δ ,∆) = Qn(α
∗+δ ,β ∗+∆)−Qn(α

∗,β ∗) for (δ ,∆)∈RK×Rp. For each model A∈ G +
n , let r∗A = 16K(M+

ζ̄ 1/2)(
¯
f
¯
ζ )−1

√
(|A|+1) log(p)/n . If we can show that inf(δ ,∆)∈SA(r∗A)

F(δ ,∆) > 0, then by convexity of ρτ(·), we

must have ‖α̂A−α∗‖2
2 +‖β̂

A−β
∗‖2

2 ≤ (r∗A)
2. Indeed, by Knight’s identity (see (28) of the appendix) and the mean

value theorem, we have

inf
(δ ,∆)∈SA(r∗A)

E[F(δ ,∆)]

= inf
(δ ,∆)∈SA(r∗A)

1
nK

n

∑
i=1

K

∑
k=1

∫
δk+xT

i ∆

0
[F(α∗k + t)−F(α∗k )]dt

= inf
(δ ,∆)∈SA(r∗A)

1
nK

n

∑
i=1

K

∑
k=1

∫
δk+xT

i ∆

0
[t f (α∗k + ūik,t)]dt.

(20)

Note that Jn satisfies J2
n log(p)/n = O(1). Therefore, for any 1≤ i≤ n,1≤ k ≤ K and (δ ,∆) ∈ SA(r∗A), we have

|δk +xT
i ∆| ≤

√
1+‖xiA‖2 ·

√
δ 2

k +‖∆A‖2
2

≤Mr∗A
√
|A|+1 = 16KM(M+ ζ̄

1/2)(
¯
f
¯
ζ )−1(|A|+1)

√
log(p)/n

≤ 16KM(M+ ζ̄
1/2)(

¯
f
¯
ζ )−1(Jn +1)

√
log(p)/n = O(U0).

It follows from condition (C0) and (40) that

inf
(δ ,∆)∈SA(r∗A)

E[F(δ ,∆)]≥ inf
(δ ,∆)∈SA(r∗A)

¯
f

2nK

K

∑
k=1

n

∑
i=1

(δ k +xT
i ∆)2 ≥ ¯

f
2K ¯

ζ (r∗A)
2.

Therefore, by Lemma 9, with probability at least 1− exp{−nt2/[32ζ̄ (r∗A)
2]}, we have

inf
(δ ,∆)∈SA(r∗A)

F(δ ,∆)≥ inf
(δ ,∆)∈SA(r∗A)

E[F(δ ,∆)]− z(A,r∗A)

≥ ¯
f

2K ¯
ζ (r∗A)

2−4Mr∗A

√
|A|+1

n
− t.

Now take t = 8r∗A

√
ζ̄ (|A|+1) log(p)/n . It follows that for each A ∈ G +

n , with probability at least bA
n = 1−

exp{−2(|A|+1) log(p)}, we have

inf
(δ ,∆)∈SA(r∗A)

F(δ ,∆)≥ ¯
f
¯
ζ (r∗A)

2

2K
− r∗A

√
|A|+1

n

(
8
√

ζ̄ log(p) +4M
)
> 0,

which immediately implies that

‖α̂A−α‖2
2 +‖β̂

A−β
∗‖2

2 ≤ (r∗A)
2.
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Now by the Bonferroni inequality, we have ‖α̂A−α‖2
2 +‖β̂

A−β
∗‖2

2 ≤ (r∗A)
2 for all A ∈ G +

n simultaneously with

probability at least

bn = 1−
Jn

∑
|A|=s+1

(
p− s
|A|− s

)
(1−bA

n )

= 1−
Jn−s

∑
k=1

(
p− s

k

)
exp{−2(k+ s+1) log(p)}

≥ 1− p−2(s+1)
p−s

∑
k=1

(
p− s

k

)( 1
p2

)k

= 1− p−2(s+1)
[(

1+
1
p2

)p−s
−1
]
→ 1 as p→ ∞.

(21)

Now we derive the upper bound for supA∈G+
n
|Q̂A

n −Q∗n|. Let δ̂
A = α̂A−α∗ and ∆̂

A = β̂
A−β

∗. Observe that

|Q̂A
n −Q∗n|=

∣∣∣ 1
nK

n

∑
i=1

K

∑
k=1
{ρτk(yi− α̂

A
k −xT

i β̂
A)−ρτk(yi−α

∗
k −xT

i β
∗)}
∣∣∣

≤
∣∣E{F(δ̂ A, β̂ A)}

∣∣+ z(A,r∗A).

Similarly, we have ∣∣E{F(δ̂ A, β̂ A)}
∣∣= ∣∣∣∣ 1

nK

n

∑
i=1

K

∑
k=1

∫
δ̂ A

k +xT
i ∆̂

A

0
[F(α∗k + t)−F(α∗k )]dt

∣∣∣∣
≤ 1

nK

n

∑
i=1

K

∑
k=1

∫ |δ̂ A
k +xT

i ∆̂
A|

0
[t f (α∗k + ūik,t)]dt

≤ f̄
2nK

n

∑
i=1

K

∑
k=1

(δ̂ A +xT
i ∆̂

A)2

≤ 1
2

f̄ ζ̄ (‖δ̂ A‖2
2 +‖∆̂A‖2

2)≤
1
2

f̄ ζ̄ (r∗A)
2.

It follows that with probability at least bn,

|Q̂A
n −Q∗n| ≤

1
2

f̄ ζ̄ (r∗A)
2 +4Mr∗A

√
|A|+1

n
+8r∗A

√
ζ̄ (|A|+1) log(p)

n

≤ 128K2(M+ ζ̄ 1/2)2

¯
f
¯
ζ

(|A|+1) log(p)
n

holds for all A ∈ G +
n . Now going back to BIC, we have

Pr
(

inf
λ∈Ξ

+
n

[
(Q̂Âλ

n − Q̂A
n )+(|Âλ |− s)

Cn log(p)
n

]
> 0
)

≥ Pr
(

Cn log(p)
n

− sup
A∈G+

n

Q̂A
n − Q̂A

n

(|A|− s)
> 0
)
.

Therefore, with probability at least bn, we have

sup
A∈G+

n

Q̂A
n − Q̂A

n

(|A|− s)
≤ sup

A∈G+
n

Q̂∗n− Q̂A
n

(|A|− s)
= OP

( s log(p)
n

)
.

Since s = O(1) and Cn diverges with n, we have s log(p)/n = O(Cn log(p)/n). It follows that

Pr
(

Cn log(p)
n

− sup
A∈G+

n

Q̂A
n − Q̂A

n

(|A|− s)
> 0
)
→ 1 as n→ ∞,

which implies that Pr
(
inf

λ∈Ξ
+
n
[BICH(λ )−BICH(λn)]> 0

)
→ 1 as n→ ∞.
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Case II: underfitted models. For any λ ∈ Ξ−n , similar to Case I, we have

Pr
(

inf
λ∈Ξ

−
n

[BICH(λ )−BICH(λn)]> 0
)

≥ Pr
(

inf
λ∈Ξ

−
n

[
(Q̂Âλ

n − Q̂A
n )+(|Âλ |− s)

Cn log(p)
n

]
> 0
)
+O(1).

Define BICH(A) = Q̂A
n + |A|Cn log(p)/n and let G −n = {A : |A| ≤ Jn,A 6⊂ A}. We can see that {Âλ : λ ∈ Ξ−n } ⊂ G −n .

It suffices to show infA∈G−n
BICH(A) > BICH(A ) with probability tending to one as n→ ∞. For any A ∈ G −n , let

Ā = A∪A . Let θ = min j∈A |β ∗j |. Since A 6⊃ A , we must have ‖α̂A−α∗‖2
2 + ‖β̂

A−β
∗‖2 ≥ θ 2. However, since

Ā ⊃ A and |Ā| ≤ 2Jn, using Lemma 9, we can similarly show as in Case I that ‖α̂ Ā−α∗‖2
2 + ‖β̂

Ā−β
∗‖2

2 ≤ θ 2

with probability at least bĀ
n = 1− exp{−2(|Ā|+1) log(p)} as long as

θ > 8K(
¯
f
¯
ζ )−1(2

√
ζ̄ log(p) +M)

√
2Jn +1

n
,

which is implied by the assumption
√

Jn log(p)/n = O(θ). It then follows that ‖α̂ Ā−α∗‖2
2 + ‖β̂

Ā− β
∗‖2

2 ≤ θ 2

holds for all A ∈ G −n with probability at least b̃n→ 1 as n→ ∞, where

b̃n = 1−
2Jn

∑
|Ā=s+1

(
p− s
|Ā|− s

)
(1−bĀ

n )≥ 1− p−2(s+1)
[(

1+
1
p2

)p−s
−1
]
.

Therefore, there exists a ∈ [0,1], ᾱ Ā = aα̂A +(1−a)α̂ Ā and β̄
Ā = aβ̂

A +(1−a)β̂ Ā such that ‖ᾱ Ā−α∗‖2
2 +‖β̄

Ā−

β
∗‖2

2 = θ 2. By convexity of ρτ and the fact that Q̂A
n ≥ Q̂Ā

n , we have Q̄Ā
n = (nK)−1

∑
n
i=1 ∑

K
k=1 ρτk(yi− ᾱ Ā

k −xT
i β̄

Ā)≤

Q̂A
n . Note that Q̂Ā

n ≤ Q̂A
n ≤ Q∗n. It follows that Q̂A

n − Q̂Ā
n ≥ Q̄Ā

n −Q∗n. For ease of notation, let δ̄
Ā = ᾱ Ā−α∗ and

∆̄
Ā = β̄

Ā−β
∗. It can be seen that

Q̄Ā
n −Q∗n ≥ E[F(δ̄ Ā, ∆̄Ā)]− z(Ā,θ).

Following similar arguments from Case I and noting that the support of β̄
Ā is a subset of Ā, we can show that with

probability at least b̃n, for all A ∈ G −n , we have

Q̄Ā
n −Q∗n ≥ ¯

f
2K ¯

ζ θ
2−4θ

√
|Ā|+1

n
(2
√

ζ̄ log(p) +M).

Now we have

BICH(A)−BICH(Ā) = (Q̂A
n − Q̂Ā

n )+(|A|− |Ā|)Cn log(p)
n

≥ (Q̄Ā
n −Q∗n)−

Cns log(p)
n

.

Since
√

Cns log(p)/n = O(θ), it can be seen that with probability tending to one, we have infA∈G−n
BICH(A)−

BICH(Ā)> 0. Following similar arguments as in Case I, we can show BICH(Ā)≥ infS⊃A ,|S|≤2Jn BICH(S)≥BICH(A )

with probability tending to one. Case II then follows by noting that

inf
A∈G−n

[BICH(A)−BICH(A )]

= inf
A∈G−n

[BICH(A)−BICH(Ā)+BICH(Ā)−BICH(A )]

≥ inf
A∈G−n

[BICH(A)−BICH(Ā)].
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Proof of Theorem 4. See Section A of the appendix.

Proof of Lemma 2. See Lemma 1 of [23].

APPENDIX A

PROOFS

Proof of Lemma 3. Let ζ = (ζ1, . . . ,ζK)
T and ξ = (ξ1, . . . ,ξp)

T, where

ζk =−
1

nK

n

∑
i=1

[
τk− I(εi ≤ α

∗
k )
]
, 1≤ k ≤ K,

and

ξ j =−
1

nK

K

∑
k=1

n

∑
i=1

[
τk− I(εi ≤ α

∗
k )
]
xi j, 1≤ j ≤ p.

Note that (ζ T,ξ T)T ∈ ∂Qn(α
∗,β ∗), where the subdifferential is taken with respect to α and β . By convexity of

Qn(α,β ) and optimality of (α̂λ , β̂ λ ), we have

0≥ Qn(α̂λ , β̂ λ )−Qn(α
∗,β ∗)+λ (‖β̂ λ‖1−‖β ∗‖1)

≥ ζ
T(α̂λ −α

∗)+ξ
T(β̂ λ −β

∗)+λ (‖β̂ λ‖1−‖β ∗‖1)

≥ −‖ζ‖∞ · ‖α̂λ −α
∗‖1−‖ξ‖∞ · ‖β̂ λ −β

∗‖1

+λ
(
‖β̂ λ ,A c −β

∗
A c‖1−‖β̂ λ ,A −β

∗
A ‖1

)
,

which implies that

(λ −‖ξ‖∞)‖β̂ λ ,A c −β
∗
A c‖1 ≤ (λ +‖ξ‖∞)‖β̂ λ ,A −β

∗
A ‖1

+‖ζ‖∞ · ‖α̂λ −α
∗‖1.

(22)

Under event E = {‖ζ‖∞ ≤ 3λ/(2K), ‖ξ‖∞ ≤ λ/2}, it follows from (22) that

‖∆̂
λ

A c‖1 ≤ 3‖∆̂
λ

A ‖1 +
3
K ‖δ̂

λ

‖1.

The lemma then follows from Hoeffding’s inequality

Pr(E )≥ 1−Pr
(
‖ζ‖∞ >

3λ

2K

)
−Pr

(
‖ξ‖∞ >

λ

2

)
≥ 1−

K

∑
k=1

Pr
(∣∣∣− 1

nK

n

∑
i=1

[τk− I(εi ≤ α
∗
k )]
∣∣∣> 3λ

2K

)
−

p

∑
j=1

Pr
(∣∣∣− 1

nK

n

∑
i=1

xi j

K

∑
k=1

[τk− I(εi ≤ α
∗
k )]
∣∣∣> λ

2

)
≥ 1−2K exp

(
−9nλ 2

2

)
−2pexp

(
− nλ 2

2M0

)
.

This proves the lemma.

Proof of Lemma 4. First, let us show that the check loss ρτ(·) is Lipschitz continuous with Lipschitz constant

max(τ, 1− τ). To see it, note that for any u1, u2 ∈ R, we have

|ρτ(u1)−ρτ(u2)|= |(τ−0.5)(u1−u2)+0.5(|u1|− |u2|)|

≤ (|τ−0.5|+0.5)|u1−u2|= max(τ, 1− τ)|u1−u2|.
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Now let δ = α−α∗, ∆ = β −β
∗, and define

Ui(δ ,∆) =
1
K

K

∑
k=1

ρτk(yi−αk−xT
i β )− 1

K

K

∑
k=1

ρτk(yi−α
∗
k −xT

i β
∗)

=
1
K

K

∑
k=1

ρτk(r
∗
ik−δk−xT

i ∆)− 1
K

K

∑
k=1

ρτk(r
∗
ik),

where r∗ik = yi−α∗k −xT
i β
∗ = εi−α∗k , 1≤ i≤ n, 1≤ k ≤ K. It follows immediately that

e(r) = sup
(δ ,∆)∈Cr

∣∣∣∣1n n

∑
i=1

[
Ui(δ ,∆)−EUi(δ ,∆)

]∣∣∣∣.
By Lipschitz continuity of the check loss, it follows that

|Ui(δ ,∆)| ≤
1
K

K

∑
k=1
|ρτk(r

∗
ik−δk−xT

i ∆)−ρτk(r
∗
ik)|

≤ 1
K

K

∑
k=1

max(τk,1− τk)|δk +xT
i ∆| ≤ 1

K

K

∑
k=1
|δk +xT

i ∆|, 1≤ i≤ n.

(23)

Now applying Massart’s concentration inequality (Theorem 14.2, [25]), we obtain

Pr(e(r)≥ E[e(r)]+ t)≤ exp
(
− n2t2

8b2
n(r)

)
, (24)

where b2
n(r) = sup(δ ,∆)∈Cr ∑

n
i=1 var(Ui(δ ,∆)). First, we derive the upper bound on b2

n(r). Note that by (23) and

Cauchy–Schwarz inequality

b2
n(r) = sup

(δ ,∆)∈Cr

n

∑
i=1

E
[
Ui(δ ,∆)−EUi(δ ,∆)

]2 ≤ 4 sup
(δ ,∆)∈Cr

n

∑
i=1

[ K

∑
k=1

1
K
|δk +xT

i ∆|
]2

≤ 4 sup
(δ ,∆)∈Cr

n

∑
i=1

( K

∑
k=1

1
K

)[ K

∑
k=1

1
K
(δk +xT

i ∆)2
]
≤ 4nr2.

Next, we derive the upper bound on E
[
e(r)

]
. By applying the symmetrization procedure [26] and the contraction

principle [27], we have

E[e(r)]≤ 2E
[

sup
(δ ,∆)∈Cr

1
n

∣∣∣∣ n

∑
i=1

ξiUi(δ ,∆)

∣∣∣∣]

≤ 2
nK

K

∑
k=1

E
[

sup
(δ ,∆)∈Cr

∣∣∣∣ n

∑
i=1

ξi{ρτk(r
∗
ik−δk−xT

i ∆)−ρτk(r
∗
ik)}
∣∣∣∣]

≤ 4
nK

K

∑
k=1

E
[

sup
(δ ,∆)∈Cr

∣∣∣∣ n

∑
i=1

ξi(δk +xT
i ∆)

∣∣∣∣],
(25)

where ξ1, . . . ,ξn are i.i.d. Rademacher random variables that satisfy Pr(ξi = −1) = Pr(ξi = 1) = 1/2 and that are

independent of ε1, . . . ,εn.

For (δ , ∆) ∈ Cr, by condition (C1) and the Cauchy–Schwarz inequality, we have

r2 ≥ κ0

K
(‖δ‖2

2 +K‖∆A ‖2
2)≥

κ0

K2 ‖δ‖
2
1 +

κ0

s
‖∆A ‖2

1, (26)

which implies that ‖δ‖1 ≤ rK/
√

κ0 and ‖∆A ‖1 ≤ r
√

s/κ0 . Now let ξ = (ξ1, . . . ,ξn)
T. Note that for any t ∈R, we

have by Taylor expansion

E
[
exp(tXT

j ξ )
]
=

n

∏
i=1

[
1
2
(etxi j + e−txi j)

]
≤

n

∏
i=1

exp
(1

2
t2x2

i j

)
= exp

(
t2

2

n

∑
i=1

x2
i j

)
, 0≤ j ≤ p.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, OCTOBER 2019 29

Letting t > 0, by Jensen’s inequality, we have

exp
(
tE
[
‖XT

ξ‖∞

])
= exp

(
tE max

0≤ j≤p
|XT

j ξ |
)
≤ Eexp

(
t max

0≤ j≤p
|XT

j ξ |
)

= E
[

max
0≤ j≤p

exp(t|XT
j ξ |)

]
≤ E max

0≤ j≤p

(
etXT

j ξ + e−tXT
j ξ
)

≤
p

∑
j=0

E
(

etXT
j ξ + e−tXT

j ξ
)
≤ 2

p

∑
j=0

exp
( t2

2
‖X j‖2

2

)
≤ 2(1+ p)exp

( t2

2
max

0≤ j≤p
‖X j‖2

2

)
= 2(1+ p)exp

(1
2

nM0t2
)
,

which implies that

E
(
‖XT

ξ‖∞

)
≤ 1

t

[
log2+ log(1+ p)

]
+

nM0

2
t, t > 0.

Taking t =
√

2[log2+ log(1+ p)]/(nM0) and noting that p≥ 3 by condition (C0), we obtain

E
(
‖XT

ξ‖∞

)
≤
√

2nM0[log2+ log(1+ p)] ≤
√

2M0 ·
√

n(1+ log p) . (27)

It then follows from (25), (27) and Hölder’s inequality that

E[e(r)]≤ 4
nK

E
(
‖XT

ξ‖∞

)
· sup
(δ ,∆)∈Cr

K

∑
k=1

(
|δk|+‖∆‖1

)
≤ 4
√

2M0

n

√
n(1+ log p) sup

(δ ,∆)∈Cr

(
K−1‖δ‖1 +‖∆‖1

)
≤ 4
√

2M0

n

√
n(1+ log p) sup

(δ ,∆)∈Cr

[
4K−1‖δ‖1 +4‖∆A ‖1

]
≤ 16

√
2M0

κ0

√
1+ log p

n
(
√

s +1)r.

The lemma then follows from (24).

Proof of Lemma 5. By Knight’s identity [2], we have for any two scalars r 6= 0 and s,

|r− s|− |r|=−s
[
I(r > 0)− I(r < 0)

]
+2

∫ s

0

[
I(r ≤ t)− I(r ≤ 0)

]
d t.

It follows that for any τ ∈ (0,1), when r 6= 0,

ρτ(r− s)−ρτ(r) = (τ−0.5)
[
(r− s)− r

]
+0.5

[
|r− s|− |r|

]
= (0.5− τ)s−0.5s

[
I(r > 0)− I(r < 0)

]
+
∫ s

0

[
I(r ≤ t)− I(r ≤ 0)

]
d t

= s
[
I(r < 0)− τ

]
+
∫ s

0

[
I(r ≤ t)− I(r ≤ 0)

]
d t.

(28)



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, OCTOBER 2019 30

Let r∗ik = yi−α∗k −xT
i β
∗ = εi−α∗k , 1≤ i≤ n, 1≤ k ≤ K. Recall that ε has a density with respect to the Lebesgue

measure. By condition (C0), identity (28) and the mean value theorem, we have for some ūik,t between 0 and t,

E
[
Qn(α

∗+δ ,β ∗+∆)−Qn(α
∗,β ∗)

]
=

1
nK

n

∑
i=1

K

∑
k=1

∫
δk+xT

i ∆

0

[
F(α∗k + t)−F(α∗k )

]
d t

=
1

nK

n

∑
i=1

K

∑
k=1

∫
δk+xT

i ∆

0

[
t f (α∗k )+

t2

2
f ′(α∗k + ūik,t)

]
d t

≥ ¯
f

2nK

n

∑
i=1

K

∑
k=1

(δk +xT
i ∆)2− f̄ ′

6nK

n

∑
i=1

K

∑
k=1
|δk +xT

i ∆|3.

(29)

For (δ ,∆) ∈ C , note that if [
1

nK

n

∑
i=1

K

∑
k=1

(δk +xT
i ∆)2

]1/2

≤ 4q
K1/2

¯
f 1/2 , (30)

then by condition (C2), this implies that

f̄ ′

6nK

n

∑
i=1

K

∑
k=1
|δk +xT

i ∆|3 ≤ ¯
f

4nK

n

∑
i=1

K

∑
k=1

(δk +xT
i ∆)2,

which, together with (29), implies that for all (δ ,∆) ∈ C4q(K
¯
f )−1/2 ,

E
[
Qn(α

∗+δ ,β ∗+∆)−Qn(α
∗,β ∗)

]
≥ ¯

f
4nK

n

∑
i=1

K

∑
k=1

(δk +xT
i ∆)2.

To show that the lemma holds for all (δ ,∆) ∈ C , define

rC = sup
r>0

{
r : E

[
Qn(α

∗+δ ,β ∗+∆)−Qn(α
∗,β ∗)

]
≥ ¯

f
4nK

n

∑
i=1

K

∑
k=1

(δk +xT
i ∆)2, ∀(δ ,∆) ∈ Cr

}
.

By previous arguments, we must have rC ≥ 4q(K
¯
f )−1/2. Now for any (δ ,∆) ∈ C , let r2 = (nK)−1

∑
n
i=1 ∑

K
k=1(δk +

xT
i ∆)2. If r < rC , then by the definition of rC , we have

E
[
Qn(α

∗+δ ,β ∗+∆)−Qn(α
∗,β ∗)

]
≥ ¯

f
4nK

n

∑
i=1

K

∑
k=1

(δk +xT
i ∆)2. (31)

If instead r≥ rC , let δ
′= rC δ/r and ∆

′= rC ∆/r. It can be seen immediately that (nK)−1
∑

n
i=1 ∑

K
k=1(δ

′
k+xT

i ∆
′)2 = r2

C .

By convexity of Qn, we have

E
[
Qn(α

∗+δ ,β ∗+∆)−Qn(α
∗,β ∗)

]
≥ r

rC
E
[
Qn(α

∗+δ
′,β ∗+∆

′)−Qn(α
∗,β ∗)

]
≥ r

rC
¯
f
4

r2
C ≥ q

(
¯
f
K

)1/2[ 1
nK

n

∑
i=1

K

∑
k=1

(δk +xT
i ∆)2

]1/2
.

(32)

The lemma then follows from (31) and (32).

Proof of Lemma 6. As with the proof of Lemma 4, define

Ui(δ ,∆) =
1
K

K

∑
k=1

ρτk(r
∗
ik−δk−xT

i ∆)− 1
K

K

∑
k=1

ρτk(r
∗
ik),
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where r∗ik = yi−α∗k −xT
i β
∗ = εi−α∗k , 1 ≤ i ≤ n, 1 ≤ k ≤ K. Now applying Massart’s concentration inequality, we

get

Pr(z(r)≥ E[z(r)]+ t)≤ exp
(
− n2t2

8b2
n(r)

)
, (33)

where b2
n(r) = sup(δ ,∆)∈BA (r) ∑

n
i=1 var(Ui(δ ,∆)). For ease of notation, let ∆

k
A = (δk,∆

T
A )T, 1 ≤ k ≤ K. It follows

from Lipschitz continuity of the check loss that

b2
n(r)≤

4
K

sup
(δ ,∆)∈BA (r)

K

∑
k=1

n

∑
i=1

(δk +xT
i ∆)2

=
4
K

sup
(δ ,∆)∈BA (r)

K

∑
k=1

(∆k
A )TXT

A0
XA0 ∆

k
A

≤ 4n
K

sup
(δ ,∆)∈BA (r)

K

∑
k=1

µ
[
δ

2
k +‖∆A ‖2

2
]
≤ 4nµr2.

Moreover, by the symmetrization procedure and the contraction principle, we obtain

E[z(r)]≤ 4
nK

K

∑
k=1

E
[

sup
(δ ,∆)∈BA (r)

∣∣∣∣ n

∑
i=1

ξi(δk +xT
A ∆A )

∣∣∣∣]

≤ 4
nK

E
(
‖XT

A0
ξ‖2
)
· sup
(δ ,∆)∈BA (r)

K

∑
k=1
‖∆k

A ‖2 ≤
4r
n
E
(
‖XT

A0
ξ‖2
)
,

(34)

where ξ = (ξ1, . . . ,ξn)
T is a random vector of i.i.d. Rademacher variables that is independent of {ε1, . . . ,εn}. By

Jensen’s and Khintchine inequalities [28], we have

E
(
‖XT

A0
ξ‖2
)
≤
[
E
(
ξ

TXA0X
T
A0

ξ
)]1/2

=

[
∑

j∈A0

E
( n

∑
i=1

ξixi j

)2]1/2

≤
(

∑
j∈A0

n

∑
i=1

x2
i j

)1/2

=

( n

∑
i=1

∑
j∈A0

x2
i j

)1/2

≤
√

n(s+1)MA .

It follows from (34) that E[z(r)]≤ 4r
√
(s+1)MA /n . The first part of the lemma then follows from (33).

Let F(δ ,∆) = Qn(α
∗+δ ,β ∗+∆)−Qn(α

∗,β ∗). To prove the second inequality of the lemma, it suffices to note

that

inf
(δ ,∆)∈SA (r)

F(δ ,∆)≥ inf
(δ ,∆)∈SA (r)

E
[
Qn(α

∗+δ ,β ∗+∆)−Qn(α
∗,β ∗)

]
− z(r),

and that by (28) and the mean value theorem, we have for some ūik,t between 0 and t such that

inf
(δ ,∆)∈SA (r)

E
[
Qn(α

∗+δ ,β ∗+∆)−Qn(α
∗,β ∗)

]
= inf

(δ ,∆)∈SA (r)

1
nK

n

∑
i=1

K

∑
k=1

∫
δk+xT

i ∆

0

[
F(α∗k + t)−F(α∗k )

]
dt

= inf
(δ ,∆)∈SA (r)

1
nK

n

∑
i=1

K

∑
k=1

∫
δk+xT

i ∆

0

[
t f (α∗k + ūik,t)

]
dt.

(35)

Now for any 1≤ i≤ n, 1≤ k ≤ K and (δ ,∆) ∈ SA (r), we have

|δk +xT
i ∆| ≤

√
1+‖xiA ‖2

2 ·
√

δ 2
k +‖∆A ‖2

2 ≤ r
√
(s+1)MA ≤U0.
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It then follows from condition (C0) and (35) that

inf
(δ ,∆)∈SA (r)

E
[
Qn(α

∗+δ ,β ∗+∆)−Qn(α
∗,β ∗)

]
≥ inf

(δ ,∆)∈SA (r)
¯
f

2nK

n

∑
i=1

K

∑
k=1

(δk +xT
i ∆)2 ≥ ¯

f
2K ¯

µr2.

This completes the proof.

Proof of Lemma 7. Note that Qn is convex, but not differentiable. Denote the subdifferential of Qn(α,β ) at (α̂o, β̂
o
)

by

∂Qn(α̂
o, β̂

o
) =

{
(ζ ,ξ ) : ζk =

1−2τk

2K
− 1

2nK

n

∑
i=1

Sgn(r̂ik), 1≤ k ≤ K,

ξ j =
1
2n

n

∑
i=1

xi j

(
1− 2

K

K

∑
l=1

τl

)
− 1

2nK

n

∑
i=1

K

∑
l=1

Sgn(r̂il)xi j, 1≤ j ≤ p
}
.

By convexity of Qn, for any (ζ ,ξ ) ∈ ∂Qn(α̂
o, β̂

o
) and (α,β ), we have

Qn(α,β )−Qn(α̂
o, β̂

o
)≥ ζ

T(α− α̂
o)+ξ

T(β − β̂
o
).

Now by optimality of (α̂o, β̂
o
), we can take ζ = 0 and ξ A = 0. It follows that

Qn(α,β )≥ Qn(α̂
o, β̂

o
)+ ∑

j∈A c
ξ j(β j− β̂

o
j ). (36)

Under event E1, we have max j∈A c |β̂ (0)
j | ≤ a0λ ≤ a2λ . Moreover, by condition (C3), we have

min
j∈A
|β̂ (0)| ≥ min

j∈A
|β ∗j |−max

j∈A
|β̂ (0)

j −β
∗
j | ≥ (a+1−a0)λ ≥ aλ .

Thus, under event E1, it follows from properties (P3) and (P4) of pλ (·) that

p′
λ
(|β̂ (0)

j |)≥ a1λ , ∀ j ∈A c and p′
λ
(|β̂ (0)

j |) = 0, ∀ j ∈A .

Similarly, under event E3 and by the fact that β̂
o
A c = 0, it can be shown that

p′
λ
(|β̂ o

j |) = 0, ∀ j ∈A and p′
λ
(|β̂ o

j |)≥ a1λ , ∀ j ∈A c.

To this end, it can be seen from step (2.a) of the LLA algorithm that

(α̂ (1), β̂
(1)
) = argmin

α,β

Qn(α,β )+ ∑
j∈A c

p′
λ
(|β̂ (0)

j |)|β j|.

Now under E2 = {‖ξ A c‖∞ < a1λ}, it follows from (36) that for any (α,β ),[
Qn(α,β )+ ∑

j∈A c
p′

λ
(|β̂ (0)

j |)|β j|
]
−
[
Qn(α̂

o, β̂
o
)+ ∑

j∈A c
p′

λ
(|β̂ (0)

j |)|β̂
o
j |
]

≥ ∑
j∈A c

ξ j(β j− β̂
o
j )+ ∑

j∈A c
p′

λ
(|β̂ j|(0))|β j|

≥ ∑
j∈A c

[
p′

λ
(|β̂ (0)

j |)−|ξ j|
]
|β j| ≥ 0.

(37)

The leftmost hand side of the above inequality is strictly positive unless βA c = 0. Note that condition (C0) implies

the uniqueness of the oracle estimator (See Section B of this appendix). It can be then seen that (α̂ (1), β̂
(1)
) coincides



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, OCTOBER 2019 33

with the oracle estimator. Now given that (α̂ (1), β̂
(1)
) is the oracle estimator, we show that (α̂ (2), β̂

(2)
) yielded by

the LLA algorithm will still be the oracle estimator. To see it, note that under event E2,

p′
λ
(|β̂ (1)

j |) = 0, ∀ j ∈A and p′
λ
(|β̂ (1)

j |)≥ a1λ , ∀ j ∈A c.

By the LLA iteration, we have

(α̂ (2), β̂
(2)
) = argmin

α,β

Qn(α,β )+ ∑
j∈A c

p′
λ
(|β̂ (1)

j |)|β j|.

Thus, we can follow similar arguments from (37) to show that under event E3, (α̂
(2), β̂

(2)
) is still the oracle estimator.

This proves the lemma.

Note that the above proof is slightly different from the general result (Theorems 1 and 2) in [18] since we need

to deal with the intercept terms additionally.

Proof of Lemma 8. Consider a minimal ψ-cover of BA (r) and denote this covering net by {(δ `,∆`), `= 1, . . . ,Nψ}⊂

BA (r). For j ∈A c, define

Ui j(δ ,∆) =
1
K

K

∑
k=1

[
I(r∗ik ≤ δk +xT

i ∆)− τk
]
xi j−

1
K

K

∑
k=1

[
I(r∗ik ≤ 0)− τk

]
xi j,

where r∗ik = yi−α∗k −xT
i β
∗ = εi−α∗k , 1≤ i≤ n, 1≤ k ≤ K. Then it can be seen that

γ j(r) = sup
(δ ,∆)∈BA (r)

∣∣∣∣1n n

∑
i=1

[
Ui j(δ ,∆)−EUi j(δ ,∆)

]∣∣∣∣.
For any (δ ,∆) ∈ BA (r) and j ∈A c, note that

|Ui j(δ ,∆)| ≤
1
K

K

∑
k=1
|I(r∗ik ≤ δk +xT

i ∆)− I(r∗ik ≤ 0)| · |xi j| ≤MA c .

Let pik = Pr
(
−(δk +xT

i ∆)− < r∗ik ≤ (δk +xT
i ∆)+

)
, 1≤ i≤ n, 1≤ k≤ K. It follows from the mean value theorem and

condition (C0) that

pik = F(α∗k +(δk +xT
i ∆)+)−F(α∗k − (δk +xT

i ∆)−)≤ f̄ |δk +xT
i ∆|.

By Cauchy–Schwarz inequality and the mean value theorem, we have

var
[
Ui j(δ ,∆)

]
≤

x2
i j

K

K

∑
k=1

var
[
I
(
−(δk +xT

i ∆)− < r∗ik ≤ (δk +xT
i ∆)+

)]
=

x2
i j

K

K

∑
k=1

pik(1− pik)≤
f̄ x2

i j

K

K

∑
k=1
|δk +xT

i ∆| ≤
f̄ M2

A c

K

K

∑
k=1
|δk +xT

iA ∆A |.

Let ∆
k
A = (δk,∆

T
A )T, 1≤ k ≤ K. By Cauchy–Schwarz inequality again, we get

1
n

n

∑
i=1

var
[
Ui j(δ ,∆)

]
≤ 1

nK
f̄ M2

A c

n

∑
i=1

K

∑
k=1
|δk +xT

iA ∆A |

≤
f̄ M2

A c

K

K

∑
k=1

[1
n

(
∆

k
A

)TXT
A0
XA0∆

k
A

]1/2
≤ f̄ M2

A c µ
1/2r.

Now applying Bernstein inequality, we have for any (δ ,∆) ∈ BA (r) and t > 0,

Pr
(∣∣∣∣1n n

∑
i=1

[
Ui j(δ ,∆)−EUi j(δ ,∆)

]∣∣∣∣> t
)
≤ 2exp

(
− nt2

2 f̄ M2
A c µ

1/2r+ 4
3 MA ct

)
.
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Now for 1≤ `≤ Nψ , let B`(ψ) = {(δ ,∆) : ‖δ −δ
`‖2

2+‖∆−∆
`‖2

2 ≤ψ2, ∆A c = 0} be the ball centered at (δ `,∆`) ∈

BA (r) with radius ψ. For any 1≤ i≤ n, 1≤ k ≤ K and (δ ,∆) ∈ B`(ψ), note that

|(δk +xT
i ∆)− (δ `

k +xT
i ∆

`)| ≤
(
1+‖xiA ‖2

2
)1/2

ψ ≤
[
(s+1)MA

]1/2
ψ.

For 1≤ i≤ n and j ∈A c, let

Vi j(δ
`,∆`) =

|xi j|
K

K

∑
k=1

[
I
(
r∗ik ≤ δ

`
k +xT

i ∆
`+((s+1)MA )1/2

ψ
)
− I(r∗ik ≤ δ

`
k +xT

i ∆
`)
]
.

Since the indicator function I(u≤ t) is nondecreasing in t, we have

sup
(δ ,∆)∈B`(ψ)

∣∣∣∣1n n

∑
i=1

(
Ui j(δ ,∆)−Ui j(δ

`,∆`)−E
[
Ui j(δ ,∆)−Ui j(δ

`,∆`)
])∣∣∣∣

≤ 1
nK

n

∑
i=1
|xi j|

K

∑
k=1

[
I
(
r∗ik ≤ δ

`
k +xT

i ∆
`+((s+1)MA )1/2

ψ
)
− I(r∗ik ≤ δ

`
k +xT

i ∆
`)

−Pr
(
r∗ik ≤ δ

`
k +xT

i ∆
`− ((s+1)MA )1/2

ψ
)
+Pr(r∗ik ≤ δ

`
k +xT

i ∆
`)
]

:= I1 +
1
n

n

∑
i=1

[
Vi j(δ

`,∆`)−EVi j(δ
`,∆`)

]
,

(38)

where

I1 =
1

nK

n

∑
i=1
|xi j|

K

∑
k=1

[
Pr
(
r∗ik ≤ δ

`
k +xT

i ∆
`+((s+1)MA )1/2

ψ
)

−Pr
(
r∗ik ≤ δ

`
k +xT

i ∆
`− ((s+1)MA )1/2

ψ
)]
.

By the mean value theorem, we have

I1 ≤
1

nK

n

∑
i=1
|xi j|

K

∑
k=1
·2
(
(s+1)MA

)1/2 f̄ ψ ≤ 2 f̄ MA c
(
(s+1)MA

)1/2
ψ.

Similarly, it can be shown that |Vi j(δ
`,∆`)| ≤MA c and

1
n

n

∑
i=1

var(Vi j(δ
`,∆`))≤ f̄ M2

A c
(
(s+1)MA

)1/2
ψ.

It then follows from (38) and Bernstein inequality that for 1≤ `≤ Nψ ,

Pr
(

sup
(δ ,∆)∈B`(ψ)

∣∣∣∣1n n

∑
i=1

(
Ui j(δ ,∆)−Ui j(δ

`,∆`)−E
[
Ui j(δ ,∆)−Ui j(δ

`,∆`)
])∣∣∣∣> t

)
≤ 2exp

(
− nt2

1

2 f̄ M2
A c

(
(s+1)MA

)1/2
ψ + 4

3 MA ct1

)
,

where t1 =
[
t−2 f̄ MA c

(
(s+1)MA

)1/2
ψ
]
+
. The lemma then follows by noting that

Pr(γ j(r)> t) = Pr
(

sup
(δ ,∆)∈BA (r)

∣∣∣∣1n n

∑
i=1

[
Ui j(δ ,∆)−EUi j(δ ,∆)

]∣∣∣∣> t
)

≤
Nψ

∑
`=1

Pr
(

sup
(δ ,∆)∈B`(ψ)

∣∣∣∣1n n

∑
i=1

(
Ui j(δ ,∆)−Ui j(δ

`,∆`)

−E
[
Ui j(δ ,∆)−Ui j(δ

`,∆`)
])∣∣∣∣> t

2

)
+

Nψ

∑
`=1

Pr
(∣∣∣∣1n n

∑
i=1

[
Ui j(δ

`,∆`)−EUi j(δ
`,∆`)

]∣∣∣∣> t
2

)
.
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This completes the proof.

Proof of Lemma 9. Let Ui(δ ,∆) =
1
K ∑

K
k=1{ρτk(r

∗
ik−δk−xT

i ∆)−ρτk(r
∗
ik)}, where r∗ik = yi−α∗k −xT

i β
∗ = εi−α∗k ,1≤

i≤ n,1≤ k ≤ K. By Massart’s concentration inequality, we have

Pr(z(A,r)≥ E[z(A,r)]+ t)≤ exp
(
− n2t2

8b2
n(A,r)

)
,

where b2
n(A,r) = sup(δ ,∆)∈BA(r) ∑

n
i=1 var(Ui(δ ,∆)). It follows from Lipschitz continuity of the check loss that

b2
n(A,r)≤

4
K

sup
(δ ,∆)∈BA(r)

K

∑
k=1

n

∑
i=1

(δk +xT
i ∆)2

=
4
K

sup
(δ ,∆)∈BA(r)

K

∑
k=1

(δk,∆
T
A)(1n,XA)

T(1n,XA)(δk,∆
T
A)

T

≤ 4n
K

sup
(δ ,∆)∈BA(r)

K

∑
k=1

ζ̄ [δ 2
k +‖∆A‖2]≤ 4nζ̄ r2.

Moreover, by the symmetrization procedure and the contraction principle, we obtain

E[z(A,r)]≤ 4
nK

K

∑
k=1

E
[

sup
(δ ,∆)∈BA(r)

∣∣∣∣ n

∑
i=1

ξi(δk +xT
iA∆A)

∣∣∣∣]

≤ 4
nK

E(‖(1n,XA)
T
ξ‖2) · sup

(δ ,∆)∈BA(r)

K

∑
k=1
‖(δk,∆

T
A)

T‖2

≤ 4r
n
E(‖(1n,XA)

T
ξ‖2),

where ξ = (ξ1, . . . ,ξn)
T is a random vector of i.i.d. Rademacher variables, independent of ε1, . . . ,εn. By Jensen’s

and Khintchine inequalities, we have

E(‖(1n,XA)
T
ξ‖2)≤ {E[ξ T(1n,XA)(1n,XA)

T
ξ ]}1/2

=

[
∑

j∈{0}∪A
E
( n

∑
i=1

ξixi j

)2]1/2

≤
(

∑
j∈{0}∪A

n

∑
i=1

x2
i j

)1/2

=

( n

∑
i=1

∑
j∈{0}∪A

x2
i j

)1/2

≤M
√

n(|A|+1) .

It follows that E[z(A,r)]≤ 4Mr
√
(|A|+1)/n . The lemma then follows.

Proof of Theorem 4. As in the proof of Theorem 3, split all models under consideration, {Âλ : λ ∈ Ξn}, into three

groups: {Âλ : λ ∈Ξ−n }, {Âλ : λ ∈Ξ0
n}, and {Âλ : λ ∈Ξ+

n }, where Ξ−n = {λ ∈Ξn : A 6⊂ Âλ}, Ξ0
n = {λ ∈Ξn : Âλ =A }

and Ξ+
n = {λ ∈ Ξn : A ⊂ Âλ , Âλ 6= A }.

Let Q̂λ
n = (nK)−1

∑
n
i=1 ∑

K
k=1 ρτk(yi− α̂λ

k − xT
i β̂

λ ), where (α̂λ , β̂
λ

) is the two-step LLA estimator to the folded

concave penalized CQR (6) with lasso initialization. Also, let Q∗n = (nK)−1
∑

n
i=1 ∑

K
k=1 ρτk(yi−α∗k −xT

i β
∗). For any

A⊂ {1,2, . . . , p}, let (α̂A, β̂
A
) be the estimator obtained by fitting the canonical CQR to model A, i.e.,

(α̂A, β̂
A
) = argmin

α,β :β Ac=0

1
nK

n

∑
i=1

K

∑
k=1

ρτk(yi−αk−xT
i β ). (39)

Define Q̂A
n = (nK)−1

∑
n
i=1 ∑

K
k=1 ρτk(yi− α̂A

k −xT
i β̂

A). For any λ ∈ Ξn, recall that Âλ = {1 ≤ j ≤ p : β̂ λ
j 6= 0} corre-

sponds to the active set of the two-step LLA estimator (α̂λ , β̂
λ

). By optimality of (α̂ Âλ , β̂
Âλ

) in (39), we have

Q̂Âλ
n ≤ Q̂λ

n .
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Let G +
n = {A : A ⊃ A ,A 6= A , |A| ≤ Jn}. It can be seen that {Âλ : λ ∈ Ξ+

n } ⊂ G +
n . For r > 0 and A ∈ G +

n , let

BA(r) = {(δ ,∆)∈RK×Rp : ‖δ‖2+‖∆A‖2 ≤ r2,∆Ac = 0} and SA(r) = {(δ ,∆)∈RK×Rp : ‖δ‖2+‖∆A‖2 = r2,∆Ac =

0}.

Case I: overfitted models. By Theorem 2, under the assumptions of this theorem, we have

P(Âλn 6= A )→ O(1) as n→ ∞.

Therefore, for any λ ∈ Ξ+
n , we have

Pr
(

inf
λ∈Ξ

+
n

[BICHL(λ )−BICHL(λn)]> 0
)

= Pr
(

inf
λ∈Ξ

+
n

[
log(Q̂λ

n /Q̂A
n )+(|Âλ |− s)

Cn log(p)
n

]
> 0
)
+O(1)

≥ Pr
(

inf
λ∈Ξ

+
n

[
log(Q̂Âλ

n /Q̂A
n )+(|Âλ |− s)

Cn log(p)
n

]
> 0
)
+O(1),

where the last inequality follows from the fact that Q̂λ
n ≥ Q̂Âλ

n . Moreover, note that Q̂Âλ
n ≤ Q̂A

n ≤Q∗n due to inclusion

A ⊂ Âλ . We then apply the inequality log(1+ x)≤ x,∀x≥ 0 to get

log
(

Q̂Âλ
n

Q̂A
n

)
=− log

(
Q̂A

n

Q̂Âλ
n

)
=− log

(
1+

Q̂A
n − Q̂Âλ

n

Q̂Âλ
n

)
≥− Q̂A

n − Q̂Âλ
n

Q̂Âλ
n

.

Let F(δ ,∆) = Qn(α
∗+δ ,β ∗+∆)−Qn(α

∗,β ∗) for (δ ,∆) ∈ RK×Rp. For each model A ∈ G +
n , let r∗A = 16K(M+

ζ̄ 1/2)(
¯
f
¯
ζ )−1

√
(|A|+1) log(p)/n . If we can show that inf(δ ,∆)∈SA(r∗A)

F(δ ,∆) > 0, then by convexity of ρτ(·), we

must have ‖α̂A−α∗‖2
2 +‖β̂

A−β
∗‖2

2 ≤ (r∗A)
2. Indeed, by Knight’s identity (see (28) of the appendix) and the mean

value theorem, we have

inf
(δ ,∆)∈SA(r∗A)

E[F(δ ,∆)]

= inf
(δ ,∆)∈SA(r∗A)

1
nK

n

∑
i=1

K

∑
k=1

∫
δk+xT

i ∆

0
[F(α∗k + t)−F(α∗k )]dt

= inf
(δ ,∆)∈SA(r∗A)

1
nK

n

∑
i=1

K

∑
k=1

∫
δk+xT

i ∆

0
[t f (α∗k + ūik,t)]dt.

(40)

Note that Jn satisfies J2
n log(p)/n = O(1). Therefore, for any 1≤ i≤ n,1≤ k ≤ K and (δ ,∆) ∈ SA(r∗A), we have

|δk +xT
i ∆| ≤

√
1+‖xiA‖2 ·

√
δ 2

k +‖∆A‖2
2

≤Mr∗A
√
|A|+1 = 16KM(M+ ζ̄

1/2)(
¯
f
¯
ζ )−1(|A|+1)

√
log(p)/n

≤ 16KM(M+ ζ̄
1/2)(

¯
f
¯
ζ )−1(Jn +1)

√
log(p)/n = O(U0).

It follows from condition (C0) and (40) that

inf
(δ ,∆)∈SA(r∗A)

E[F(δ ,∆)]≥ inf
(δ ,∆)∈SA(r∗A)

¯
f

2nK

K

∑
k=1

n

∑
i=1

(δ k +xT
i ∆)2 ≥ ¯

f
2K ¯

ζ (r∗A)
2.

Therefore, by Lemma 9, with probability at least 1− exp{−nt2/[32ζ̄ (r∗A)
2]}, we have

inf
(δ ,∆)∈SA(r∗A)

F(δ ,∆)≥ inf
(δ ,∆)∈SA(r∗A)

E[F(δ ,∆)]− z(A,r∗A)

≥ ¯
f

2K ¯
ζ (r∗A)

2−4Mr∗A

√
|A|+1

n
− t.
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Now take t = 8r∗A

√
ζ̄ (|A|+1) log(p)/n . It follows that for each A ∈ G +

n , with probability at least bA
n = 1−

exp{−2(|A|+1) log(p)}, we have

inf
(δ ,∆)∈SA(r∗A)

F(δ ,∆)≥ ¯
f
¯
ζ (r∗A)

2

2K
− r∗A

√
|A|+1

n

(
8
√

ζ̄ log(p) +4M
)
> 0,

which immediately implies that

‖α̂A−α‖2
2 +‖β̂

A−β
∗‖2

2 ≤ (r∗A)
2.

Now by the Bonferroni inequality, we have ‖α̂A−α‖2
2 +‖β̂

A−β
∗‖2

2 ≤ (r∗A)
2 for all A ∈ G +

n simultaneously with

probability at least

bn = 1−
Jn

∑
|A|=s+1

(
p− s
|A|− s

)
(1−bA

n )

= 1−
Jn−s

∑
k=1

(
p− s

k

)
exp{−2(k+ s+1) log(p)}

≥ 1− p−2(s+1)
p−s

∑
k=1

(
p− s

k

)( 1
p2

)k

= 1− p−2(s+1)
[(

1+
1
p2

)p−s
−1
]
→ 1 as p→ ∞.

(41)

Now we derive the upper bound for supA∈G+
n
|Q̂A

n −Q∗n|. Let δ̂
A = α̂A−α∗ and ∆̂

A = β̂
A−β

∗. Observe that

|Q̂A
n −Q∗n|=

∣∣∣ 1
nK

n

∑
i=1

K

∑
k=1
{ρτk(yi− α̂

A
k −xT

i β̂
A)−ρτk(yi−α

∗
k −xT

i β
∗)}
∣∣∣

≤
∣∣E{F(δ̂ A, β̂ A)}

∣∣+ z(A,r∗A).

Similarly, we have ∣∣E{F(δ̂ A, β̂ A)}
∣∣= ∣∣∣∣ 1

nK

n

∑
i=1

K

∑
k=1

∫
δ̂ A

k +xT
i ∆̂

A

0
[F(α∗k + t)−F(α∗k )]dt

∣∣∣∣
≤ 1

nK

n

∑
i=1

K

∑
k=1

∫ |δ̂ A
k +xT

i ∆̂
A|

0
[t f (α∗k + ūik,t)]dt

≤ f̄
2nK

n

∑
i=1

K

∑
k=1

(δ̂ A +xT
i ∆̂

A)2

≤ 1
2

f̄ ζ̄ (‖δ̂ A‖2
2 +‖∆̂A‖2

2)≤
1
2

f̄ ζ̄ (r∗A)
2.

It follows that with probability at least bn,

|Q̂A
n −Q∗n| ≤

1
2

f̄ ζ̄ (r∗A)
2 +4Mr∗A

√
|A|+1

n
+8r∗A

√
ζ̄ (|A|+1) log(p)

n

≤ 128K2(M+ ζ̄ 1/2)2

¯
f
¯
ζ

(|A|+1) log(p)
n

holds for all A ∈ G +
n . Now going back to BIC, we have

Pr
(

inf
λ∈Ξ

+
n

[
log(Q̂Âλ

n /Q̂A
n )+(|Âλ |− s)

Cn log(p)
n

]
> 0
)

≥ Pr
(

Cn log(p)
n

− sup
A∈G+

n

Q̂A
n − Q̂A

n

(|A|− s)Q̂A
n
> 0
)
.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, OCTOBER 2019 38

Since E(|ε|)< ∞, it follows that E(Q∗n)≤ E(|ε|)+∑
K
k=1 |α∗k |/K < ∞. Thus, we have

Q̂A
n = Q∗n− (Q∗n− Q̂A

n ) = OP(1)

by noting that Jn log(p) = O(n). Therefore, with probability at least bn, we have

sup
A∈G+

n

Q̂A
n − Q̂A

n

(|A|− s)Q̂A
n
≤ sup

A∈G+
n

Q̂∗n− Q̂A
n

(|A|− s)Q̂A
n
= OP

( s log(p)
n

)
.

Since s = O(1) and Cn diverges with n, we have s log(p)/n = O(Cn log(p)/n). It follows that

Pr
(

Cn log(p)
n

− sup
A∈G+

n

Q̂A
n − Q̂A

n

(|A|− s)Q̂A
n
> 0
)
→ 1 as n→ ∞,

which implies that Pr
(
inf

λ∈Ξ
+
n
[BICHL(λ )−BICHL(λn)]> 0

)
→ 1 as n→ ∞.

Case II: underfitted models. For any λ ∈ Ξ−n , similar to Case I, we have

Pr
(

inf
λ∈Ξ

−
n

[BICHL(λ )−BICHL(λn)]> 0
)

≥ Pr
(

inf
λ∈Ξ

−
n

[
log(Q̂Âλ

n /Q̂A
n )+(|Âλ |− s)

Cn log(p)
n

]
> 0
)
+O(1).

Define BICHL(A) = log(nQ̂A
n )+ |A|Cn log(p)/n and let G −n = {A : |A| ≤ Jn,A 6⊂A}. We can see that {Âλ : λ ∈Ξ−n }⊂

G −n . It suffices to show infA∈G−n
BICHL(A)> BICHL(A ) with probability tending to one as n→∞. For any A∈ G −n ,

let Ā = A∪A . Let θ = min j∈A |β ∗j |. Since A 6⊃A , we must have ‖α̂A−α∗‖2
2 +‖β̂

A−β
∗‖2 ≥ θ 2. However, since

Ā ⊃ A and |Ā| ≤ 2Jn, using Lemma 9, we can similarly show as in Case I that ‖α̂ Ā−α∗‖2
2 + ‖β̂

Ā−β
∗‖2

2 ≤ θ 2

with probability at least bĀ
n = 1− exp{−2(|Ā|+1) log(p)} as long as

θ > 8K(
¯
f
¯
ζ )−1(2

√
ζ̄ log(p) +M)

√
2Jn +1

n
,

which is implied by the assumption
√

Jn log(p)/n = O(θ). It then follows that ‖α̂ Ā−α∗‖2
2 + ‖β̂

Ā− β
∗‖2

2 ≤ θ 2

holds for all A ∈ G −n with probability at least b̃n→ 1 as n→ ∞, where

b̃n = 1−
2Jn

∑
|Ā=s+1

(
p− s
|Ā|− s

)
(1−bĀ

n )≥ 1− p−2(s+1)
[(

1+
1
p2

)p−s
−1
]
.

Therefore, there exists a ∈ [0,1], ᾱ Ā = aα̂A +(1−a)α̂ Ā and β̄
Ā = aβ̂

A +(1−a)β̂ Ā such that ‖ᾱ Ā−α∗‖2
2 +‖β̄

Ā−

β
∗‖2

2 = θ 2. By convexity of ρτ and the fact that Q̂A
n ≥ Q̂Ā

n , we have Q̄Ā
n = (nK)−1

∑
n
i=1 ∑

K
k=1 ρτk(yi− ᾱ Ā

k −xT
i β̄

Ā)≤

Q̂A
n . Note that Q̂Ā

n ≤ Q̂A
n ≤ Q∗n. It follows that Q̂A

n − Q̂Ā
n ≥ Q̄Ā

n −Q∗n. For ease of notation, let δ̄
Ā = ᾱ Ā−α∗ and

∆̄
Ā = β̄

Ā−β
∗. It can be seen that

Q̄Ā
n −Q∗n ≥ E[F(δ̄ Ā, ∆̄Ā)]− z(Ā,θ).

Following similar arguments from Case I and noting that the support of β̄
Ā is a subset of Ā, we can show that with

probability at least b̃n, for all A ∈ G −n , we have

Q̄Ā
n −Q∗n ≥ ¯

f
2K ¯

ζ θ
2−4θ

√
|Ā|+1

n
(2
√

ζ̄ log(p) +M).
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Now for all A ∈ G −n , applying the inequality log(1+ x)≥min{log(2),x/2},∀x≥ 0, we have

BICHL(A)−BICHL(Ā) = log
(

1+
Q̂A

n − Q̂Ā
n

Q̂Ā
n

)
+(|A|− |Ā|)Cn log(p)

n

≥min
{

log(2),
Q̄Ā

n −Q∗n
Q̂Ā

n

}
− Cns log(p)

n
.

Since
√

Cns log(p)/n = O(θ) and Q̂Ā
n = OP(1), it can be seen that with probability tending to one, we have

infA∈G−n
BICHL(A)−BICHL(Ā)> 0. Following similar arguments as in Case I, we can show BICHL(Ā)≥ infS⊃A ,|S|≤2Jn

BICHL(S)≥ BICHL(A ) with probability tending to one. Case II then follows by noting that

inf
A∈G−n

[BICHL(A)−BICHL(A )]

= inf
A∈G−n

[BICHL(A)−BICHL(Ā)+BICHL(Ā)−BICHL(A )]

≥ inf
A∈G−n

[BICHL(A)−BICHL(Ā)].

APPENDIX B

NUMERICAL PROPERTIES OF THE CQR ORACLE SOLUTION

Recall that the CQR oracle estimator is obtained through regression on the true set of variables

(α̂o, β̂
o
) := argmin

(α,β ) : βA c=0

K

∑
k=1

wk

n

∑
i=1

ρτk(yi−αk−xT
i β ).

For ease of exposition, we will restrict the scope of variables under consideration to those in A . Specifically,

let a = α, b = βA ∈ Rs and zi = xiA , i = 1, . . . ,n. The oracle solution can be equivalently obtained through the

following minimization problem

(â, b̂) := argmin
a,b

K

∑
k=1

wk

n

∑
i=1

ρτk(yi−ak− zT
i b).

Now let uk =
(
y−ak1n−Zb

)
+

and vk =
(
y−ak1n−Zb

)
−, k = 1, . . . ,K, where Z = (z1, . . . ,zn)

T and the positive

and negative parts are taken componentwisely. Also, let u = (uT
1, . . . ,u

T
K)

T and v = (vT
1, . . . ,v

T
K)

T. Then the above

regression problem can be cast into the following linear program of standard form

minimize cTx

subject to Ax = b

x� 0,

where b = 1K⊗y, (⊗: Kronecker product) and

x =
(
aT
+,a

T
−,b

T
+,b

T
−,u

T,vT
)T
,

c =
(
0T

K ,0
T
K ,0

T
p,0

T
p,w1τ11T

n, . . . ,wKτK1T
n,w1(1− τ1)1T

n, . . . ,wK(1− τK)1T
)T
,

A =


1n · · · 0 −1n · · · 0 Z −Z In −In
...

. . .
...

...
. . .

...
...

...
...

...

0 · · · 1n 0 · · · −1n Z −Z In −In


(nK)×(2K+2s+2n)

.
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Without loss of generality, assume that 1n /∈ Span(Z), where Span(Z) denotes the column span of Z. Write

D =


1n · · · 0 Z
...

. . .
...

...

0 · · · 1n Z


(nK)×(K+s)

.

The rows of D will be denoted by dT
i , i = 1, . . . ,nK. Let H be the collection of (K + s)-element subsets of

{1, . . . ,nK}. For h ∈H , let D(h) denote the submatrix of D with rows {dT
i , i ∈ h} and b(h) be the (K + s)-vector

with coordinates {bi, i ∈ h}. We also let h̄ = {1, . . . ,n}\h for h ∈H . Let H = {h ∈H : |D(h)| 6= 0}. By similar

arguments as in Section 6.2 of [3], one can verify that the vertices of the polyhedron {x : Ax = b, x� 0} are given

by

(aT,bT)T =
[
D(h)

]−1b(h)

u(h) = v(h) = 0

u(h̄) =

[
b(h̄)−D(h̄)

(
a

b

)]
+

v(h̄) =

[
b(h̄)−D(h̄)

(
a

b

)]
−

for all h ∈ H. According to the simplex algorithm (see, e.g., [29], Chapter 3), the optimal solution to this linear

program is among the above set of vertices. Recall that y has a density with respect to the Lebesgue measure.

It can be seen that with probability one, there are at most K(K + s) zero residuals for which yi− âk− zT
i b̂ = 0,

1≤ i≤ n, 1≤ k ≤ K, given each optimal solution (â, b̂). Otherwise, suppose that there exist h ∈ H and i ∈ h̄ such

that u(i) = v(i) = 0. Then since D(h) is non-singular, it follows that

bi = dT
i

(
a

b

)
= dT

i
[
D(h)

]−1b(h),

which implies that bi is a linear combination of b(h). By the assumption that y has a density and the structure

of b, this occurs with probability zero unless bi = b j for some j ∈ h. However, there are at most (K−1) such i’s

for each j ∈ h. This means with probability one, at each vertex, there are at most K(K + s) indices i for which

u(i) = v(i) = 0.



IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. XX, NO. X, OCTOBER 2019 41

APPENDIX C

CONVERGENCE CRITERION FOR THE ADMM ALGORITHM

We adopt the following convergence criterion recommended by [30] for the ADMM algorithm (Algorithm 1) we

propose to solve the weighted lasso penalized CQR problem:∥∥∥∥∥∥
 X1

−X2

ϕ
r +

vec(Zr)

γr

−
Y

0

∥∥∥∥∥∥
2

≤ ε1
√

nK + p

+ ε2 ·max
{∥∥∥∥∥∥
 X1

−X2

ϕ
r

∥∥∥∥∥∥
2

,

∥∥∥∥∥∥
vec(Zr)

γr

∥∥∥∥∥∥
2

,‖Y‖2

}
,

σ‖XT
1{vec(Zr)−vec(Zr−1)}−XT

2(γ
r− γ

r−1)‖2 ≤ ε1
√

p+K

+ ε2 · ‖XT
1vec(Ur)−XT

2vr‖2,

where ε1 and ε2 are the tolerances taking small positive values.
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[25] P. Bühlmann and S. van de Geer, Statistics for High-Dimensional Data: Methods, Theory and Applications. Springer, 2011.

[26] A. van der Vaart and J. Wellner, Weak convergence and empirical processes. Springer, New York, 1996.

[27] M. Ledoux and M. Talagrand, Probability in Banach Spaces, Isoperimetry and Processes, 1st ed. Springer-Verlag Berlin Heidelberg,

1991.

[28] U. Haagerup, “The best constants in the Khintchine inequality,” Studia Mathematica, vol. 3, no. 70, pp. 231–283, 1981.

[29] D. Bertsimas and J. N. Tsitsiklis, Introduction to linear optimization. Athena Scientific, 1997.

[30] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimization and statistical learning via the alternating direction

method of multipliers,” Foundations and Trends® in Machine Learning, vol. 3, no. 1, pp. 1–122, 2011.


