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Abstract

Various estimators have been proposed for estimating conditional expectiles, including

those from the multiple linear expectile regression, local polynomial expectile regression,

boosted expectile regression, and so on. It is a common practice that several plausible candidate

estimators are fitted and a final estimator is selected from the candidate list. In this paper

we advocate using an exponential weighting scheme to adaptively aggregate the candidate

estimators into a final estimator. We show that the aggregated estimator enjoys an oracle

inequality. Simulations and a real data example show that the aggregated estimator outperforms

the cross-validated estimator when cross-validation exhibits selection uncertainty.

Keywords: Cross-validation, Expectile regression, Oracle inequality, Model aggregation.

1 Introduction

Expectiles (Newey and Powell, 1987) are informative location measures of probability distributions.

For each τ ∈ (0,1), the τ th expectile of a probability distribution F is defined as the quantity eτ that
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satisfies ∫ eτ

−∞

|x− eτ |dF(x) = τ

∫
∞

−∞

|x− eτ |dF(x). (1)

Denote E τ the expectile operator at level τ such that E τ(F) = eτ . For any random variable Y ∼ F,

we will also write E τ(Y ) = E τ(F). It can be shown that the 0.5th expectile coincides with the mean,

E 0.5(F) =
∫

∞

−∞
xdF(x) and moreover, all the expectiles exist as long as the mean is finite. The

financial meaning of the expectiles is transparent: E τ(F) is the amount of money that should be

added to a position in order to have a pre-specified gain-loss ratio (Bernardo and Ledoit, 2000).

Specifically, suppose Y ∼ F and let x+ = max(x,0) and x− = max(−x,0). From definition (1) of

the expectiles one has
E(Y − eτ)+
E(Y − eτ)−

=
1− τ

τ
,

where E(Y − eτ)+ and E(Y − eτ)− can be interpreted as the expected values of the gain and loss

respectively and (1− τ)/τ the targeted gain-loss ratio. An equivalent definition views expectiles as

solutions to the minimization problem

E τ(F) = argmin
a∈R

∫
∞

−∞

Ψτ(x−a)dF(x), τ ∈ (0,1),

where Ψτ(u) = |τ − I(u < 0)|u2 is the asymmetric squared error loss and I(·) represents the

indicator function. This definition reveals the fact that expectiles are very sensitive to the magnitude

of extreme losses, which leads to favorable applications of expectiles in econometrics and finance

as a downside risk measure (Kuan et al., 2009). The special role of expectiles in risk management

has been further recognized by many researchers recently. In risk management, Value at Risk (VaR)

and expected shortfall (ES) are the two most popular risk measures in use. However, it has been

shown that VaR lacks the desired property of coherence since the seminal work by Artzner et al.

(1999). Specifically, VaR is not sub-additive, which contradicts the diversification principle that

merging portfolios together should reduce the risk. ES is coherent (Acerbi and Tasche, 2002), but
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nevertheless fails to enjoy elicitability (Gneiting, 2011), another desired property of risk measures

for which meaningful point forecasts and forecast performance comparisons are possible. Expectiles

are the only risk measure that is both coherent and elicitable (Ziegel, 2014; Bellini and Bignozzi,

2015).

Expectile regression estimates the conditional expectiles of a response variable given a set of

covariates and is a useful extension to the mean regression. It has been widely applied to finance,

demography, and education (see Taylor, 2008; Schnabel and Eilers, 2009a; Sobotka et al., 2013b).

Since its advent (Aigner et al., 1976), a variety of expectile regression methods have been proposed.

The multiple linear expectile regression was systematically studied in Newey and Powell (1987), in

which theoretical properties were rigorously derived and applications to testing heteroscedasticity

and conditional symmetry were described. Nonparametric and semi-parametric expectile estimation

methods have also been considered in the literature to allow for more flexibility. Among others, Yao

and Tong (1996) provided kernel smoothing estimators of the conditional expectiles based on local

polynomial regression and they further presented the asymptotic behavior of these estimators. Their

work was followed and extended by Guo and Härdle (2012), in which simultaneous confidence bands

were established for the expectile functions. A nonparametric expectile estimation method based

on spline smoothing was introduced in Schnabel and Eilers (2009b) and similar to that, Sobotka

et al. (2013a) proposed a semi-parametric expectile estimation approach using splines. In practice,

both kernel and spline smoothing methods suffer from the curse of dimensionality. Yang and Zou

(2015) proposed a nonparametric multiple expectile regression method using gradient boosting with

regression tree base learners.

With the availability of various expectile regression methods, a practical problem is to choose

the right method for the data at hand. The topic of model selection in the context of mean regression

has been heavily studied in the literature. For example, lots of work has been devoted to the

so-called model selection information criteria such as AIC (Akaike, 1974) and BIC (Schwarz et al.,

1978). To our knowledge, there is no AIC- or BIC-like model selection criterion for expectile
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regression that has been justified theoretically. Moreover, these information criteria are often

not applicable when comparing a parametric model with a nonparametric alternative. As such,

cross-validation has been widely applied in practice and of course can be used in the context of

expectile regression. The model selection process by information criteria or cross-validation is

always stochastic. Consequently, the uncertainty in model selection is inherently a part of the

stochastic error in the final chosen model. Therefore, when the model selection uncertainty is large,

the selected model tends to suffer.

When several plausible expectile regression estimators are present, instead of trying to select

the best one, another good alternative is aggregation. In the literature, this idea is also known as

model averaging or model combining. One can use these three names interchangeably wherever

no confusion arises. There are multiple ways to do aggregation. We refer the interested readers

to a review article by Hoeting et al. (1999) on Bayesian model averaging. In this article, we

take an exponential weighting scheme to combine different expectile regression estimators. Our

estimator is a weighted average of these candidate estimators and the weight of each candidate

estimator is inversely proportional to the exponential of its cumulative empirical prediction risk.

Such an exponential weighting scheme has a solid information-theoretic justification in the context

of conditional mean regression (Yang, 2001, 2004; Catoni and Picard, 2004). We prove an oracle

inequality for the aggregated expectile regression estimator by exponential weighting in terms of

both prediction risk and squared loss. The theory implies that the aggregated expectile regression

estimator at least behaves like the best candidate expectile regression estimator. We further compare

the aggregated estimator and the cross-validated estimator by extensive simulations. It is shown

that the aggregated estimator significantly outperforms the cross-validated estimator when there is

selection uncertainty.

The article is organized as follows. In the next section, we present the aggregated expectile

regression estimator and study its theoretical properties. The applications of the aggregated expectile

regression are introduced in Section 3 through several simulation examples. We apply the aggregated
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expectile regression to study a real personal computer data example in Section 4. The technical

proofs are relegated to the appendix.

2 Aggregated Expectile Regression by Exponential Weighting

2.1 Setup and notation

Consider the standard regression setting with i.i.d. observations (xi,yi), i = 1, . . . ,n, where xi =

(xi1, . . . ,xip)
T are p-dimensional covariate vectors and yi are scalar responses. Assume these

observations are realizations of the random pair (X,Y ), where X = (X1, . . . ,Xp) ∈ Rp and Y ∈ R.

Let m(x) = E(Y |X = x) and σ2(x) = var(Y |X = x) be respectively the conditional mean and

variance functions. Assume both m(X) and σ(X) exist and σ(X) > 0 almost surely. Define

ε = (Y −m(X))/σ(X). It follows immediately that E(ε|X) = 0 and var(ε|X) = 1 almost surely.

For ease of exposition, let us write Y in terms of X and ε as

Y = m(X)+σ(X)ε. (2)

It should be noted that (2) by no means implies that we restrict ourselves to additive models only,

although additive models are obviously included. As a matter of fact, a model with multiplicative

error, for instance, Y = f (X)ε can be easily cast into (2) as long as the conditional mean and

variance functions of Y given X exist. Denote the τ th conditional expectile by eτ(x) = E τ(Y |X = x),

0 < τ < 1. The goal of the expectile regression is to estimate eτ(x). For an estimator êτ(x) of the

expectile function eτ(x), define the prediction risk and squared loss of êτ(x) by EΨτ(Y − êτ(X))

and E(êτ(X)− eτ(X))2 respectively. If the τth conditional expectile of ε given X is bτ(X), then

eτ(x) =m(X)+σ(X)bτ(X). When eτ(x) is approximately linear in x, the linear expectile regression

is expected to perform quite well. However, when complicated nonlinear pattern exists in eτ(x),

the linear expectile regression can result in very large bias. As a remedy, nonparametric expectile
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regression methods can be used to accommodate the non-linearity. Of course, nonparametric

expectile regression often has higher estimation variance than the linear expectile regression.

2.2 The aggregation algorithm

Suppose we have a sequence of estimating procedures ∆ = {δ j, j ≥ 1}, all of which can provide

estimates of eτ(x). Specifically, the estimate of eτ(x) from procedure δ j ∈ ∆ fitted on data with

sample size n is denoted by êτ, j,n(x), j ≥ 1. Note that we allow the number of procedures to be

either finite or countably infinite. Following Yang (2001), we impose no special assumptions on the

procedures and they can be either model-based or non-model based. The goal is to construct an

estimating procedure δa by adaptively aggregating this sequence of candidate estimating procedures

in the hope of achieving a small estimation risk. The algorithm for this aggregation is displayed in

Algorithm 1.

Algorithm 1 about here.

In Algorithm 1, n0 is often chosen such that both n0 and n−n0 are of the same order as n. See

more discussion in the next subsection. The tuning parameter λ is a properly chosen constant which

controls the effect of the performance of the candidate estimators on the weights. On one hand,

when λ is very small, Algorithm 1 will assign almost equal weights to the candidate estimators. In

the extreme case λ = 0, Algorithm 1 is merely a simple average of the candidate estimators. On the

other hand, when λ is large enough, Algorithm 1 will almost put all the weights on the procedure

with best performance upon evaluation on D(1). We comment on the choice of λ in Remark 3 in the

next subsection.

Note that in Algorithm 1, the weights Wj,i, n0 ≤ i ≤ n, j ≥ 1 depend on the order of the

observations from the random partition. Multiple splits can be carried out as shown in Algorithm 2

to avoid large variance in the weights. From the computational point of view, these multiple splits

can be carried out in parallel to accelerate the computation. We recommend Algorithm 2 for
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practical use and according to our empirical studies the algorithm often works quite well when the

number of splits B is taken to be several hundred.

Algorithm 2 about here.

2.3 Oracle inequalities for AEREW

We provide the oracle inequalities for AEREW in terms of both prediction risk and squared loss

in the following theorem. To facilitate the discussion, let us introduce some notation. Denote

c = min(τ,1−τ) and c̄ = max(τ,1−τ). For a random variable Z, define the sub-exponential norm

of Z by ‖Z‖SEXP ≡ supk≥1 k−1(E|Z|k)1/k. If ‖Z‖SEXP is finite, we call Z a sub-exponential random

variable (Vershynin, 2010).

Theorem 1. Under the general model (2) and assume that the candidate estimators satisfy the

following conditions:

(C1) With probability one, supi, j |êτ, j,i(X)− eτ(X)| ≤ Aτ and |eτ(X)| ≤ Bτ , where Aτ ,Bτ ∈ (0,∞)

are positive constants depending on τ.

(C2) With probability one, |σ(X)| ≤C0, where C0 ∈ (0,∞) is also a positive constant.

(C3) With probability one, the sub-exponential norm of ε given X is bounded by a positive constant

K ∈ (0,∞).

Let Kτ = 2c̄(K + Bτ) and Dτ = 4eKτ , where e = exp(1). Define the two functions M0(t) =

2exp(2e2K2
τ t2) and M2(t) = 16

√
2exp(4e2K2

τ t2). When the tuning parameter λ is chosen such

that

λ ≤min

{
1

2C0AτDτ

,
cexp

(
−c̄Aτ(C0Dτ)

−1)
C2

0M2(D−1
τ )+16c̄2AτM0(D−1

τ )

}
, (3)
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the risk of the combined estimator by AEREW (Algorithm 1 and Algorithm 2) has the following

upper bound

EΨτ(Y − êτ,·,n(X))≤ inf
j≥1

{
log(1/π j)

λ (n−n0)
+EΨτ(Y − êτ, j,n0(X))

}
. (4)

and the squared loss of the combined estimator satisfies

E(êτ,·,n(X)− eτ(X))2 ≤ inf
j≥1

{
log(1/π j)

λc(n−n0)
+(c̄/c)E(êτ, j,n0(X)− eτ(X))2

}
, (5)

where (X,Y ) is taken to be a random observation from (2) that is independent of the observations

(Xi,Yi)
n
i=1.

Remark 1. The assumption of conditions (C1-C2) is mild and can be easily satisfied with high

probability if the mean function m(X) as well as the variance function σ2(X) are bounded almost

surely. This assumption is fairly common in related work for aggregation.

Remark 2. The class of sub-exponential random variables covers all random variables for which the

moment generating functions exist in a neighborhood of zero and hence is quite large to encompass

commonly used error distributions. As a consequence, condition (C3) does not restrict the response

Y to be bounded, which is however a condition often assumed in the machine learning literature for

simplicity.

Remark 3. The oracle inequality (4) tells us that the aggregated estimator achieves a prediction

risk that is smaller than the smallest prediction risk offered by the candidate estimators plus an

additional risk term. Assume there are M candidate estimators all of which are assigned equal prior

weights, the extra risk term in the oracle inequality (4) becomes log(M)/{λ (n−n0)}. Although

λ has an upper bound by (3) in order for us to prove the oracle inequalities, there should also be

a lower bound for λ in order to make the extra term log(M)
λ (n−n0)

much smaller than EΨτ(Y − eτ(X)).

Otherwise the oracle inequality offers no meaningful conclusions. Typically, EΨτ(Y − êτ, j,n0(X))
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converges to EΨτ(Y − eτ(X)) at rate n−1
0 for parametric estimators and at a slower rate than n−1

0

for nonparametric estimators. So if one only cares about the absolute prediction risk, then we only

need to require log(M)
λ (n−n0)

� 1. Of course, we often also care about the rate of convergence. If n0 is

chosen such that both n0 and n−n0 are of order n, then as long as λ ≥ O(log(M)) the extra risk

term log(M)
λ (n−n0)

does not affect the rate of convergence, i.e., the aggregated estimator by AEREW

will achieve the same rate of convergence as the best candidate estimator. We recommend using

max(1,blog(M)c) as the default value for λ . In all of our numerical experiments this default choice

works very well and we have also found that the performance of AEREW is insensitive to the choice

of λ in a fairly wide range.

3 Applications and Simulation Examples

In this section, we demonstrate several useful applications of aggregation in expectile regression.

These applications are illustrated through two simulation examples.

3.1 Local expectile regression: bandwidth selection or aggregation?

When there is a single covariate, nonparametric expectile regression can be done via the local fitting

scheme as shown in Yao and Tong (1996). It was argued by Yao and Tong (1996) that the local

linear fit automatically corrects the boundary effects inherited from the local constant fit (see also

Fan, 1992) and the estimator of the derivative plays an important role in monitoring the reliability

of non-linear prediction and in detecting chaos. To be specific, given a random sample (Xi,Yi)
n
i=1,

the local linear estimators of eτ(x) = E τ(Y |X = x) and e′τ(x) = deτ(x)/dx are defined as

(
êτ(x;h), ê′τ(x;h)

)
= argmin

a,b∈R

n

∑
i=1

Ψτ(Yi−a−b(Xi− x))h−1K
(

Xi− x
h

)
, (6)
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where K(·) is the kernel density and h > 0 is the bandwidth. Though many kernel densities are

available for the local linear regressions, we chose the Gaussian kernel K(u) = (2π)−1/2 exp(−u2/2)

for illustration purpose.

The choice of h reflects the tradeoff between the bias and variance of the estimators and

has a high impact on the performance of the prediction. The theoretically optimal bandwidth is

h =Cτn−1/5 where Cτ depends on unknown quantities (Yao and Tong, 1996). In practice, we can

select the bandwidth through cross-validation. See Heidenreich et al. (2013) for a recent review of

bandwidth selection methods.

Alternatively, we can combine the kernel estimators at different bandwidths. Specifically, for

a sequence of candidate bandwidths h1, . . . ,hM, we obtain the local linear fit êτ(x;h j) for each

bandwidth h j, 1≤ j ≤M and combine these estimators using AEREW.

We illustrate this application through a simulation study. Consider the following heteroscedastic

model

Y = 0.5{X +2exp(−16X2)}+{0.4exp(−2X2)+0.2}ε, (7)

where the scalar covariate X is independent of the random error ε. Moreover, suppose X ∼

Uniform(−2,2) and ε ∼ Laplace(0,1/
√

2). The density of ε is fε(u) = exp(−
√

2|u|)/
√

2. Note

that ε is a sub-exponential random variable satisfying E(ε) = 0 and var(ε) = 1. A similar model

to (7) was considered in Fan and Yao (1998) under a different error distribution. For the sim-

ulation study, a training set of N = 200 observations were randomly generated from model (7)

and local linear regressions (6) were fitted to the training data with five candidate bandwidths

h = (0.1,0.3,0.5,0.7,0.9)× (200)−1/5.

To demonstrate the benefit of aggregation and compare it with cross-validation in bandwidth

selection, we applied a five-fold cross-validation to select the best bandwidth and also combined the

five local linear expectile regression estimators using AEREW (Algorithm 2), for which B = 200

splits were conducted and the splitting size N0 = 160 and prior weights π j = 1/5, 1≤ j ≤ 5 were
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chosen. We also set λ = 1. To compare the estimation performance of different procedures, we

independently simulated a test set of N1 = 10000 observations from model (7) and calculated the

following two performance measures based on the test data. Assume the true expectile function

is eτ(·) and its estimate from a specific procedure is êτ(·). The two measures: (i) the estimated

prediction risk, and (ii) estimated squared deviation (MSD) for êτ(·) are respectively defined as

risk(τ) =
1

N1

N1

∑
i=1

Ψτ(Yi− êτ(Xi)) and MSD(τ) =

√√√√ 1
N1

N1

∑
i=1

(êτ(Xi)− eτ(Xi))2. (8)

For model (7), the true expectile function is eτ(x) = 0.5{x+ 2exp(−16x2)}+ {0.4exp(−2x2)+

0.2}bτ , where bτ = E τ(ε) is the τth expectile of the Laplace random error. The simulations were

repeated M = 100 times under the above setting. For illustration purpose, we also presented the

proportion pCV of each candidate estimator being selected by the five-fold cross-validation among

these 100 runs. The results are summarized in Table 1.

Table 1 about here.

In Table 1, the performance measures were calculated by averaging over the 100 replicates and

their respective standard errors were reported in the parentheses. It is clear from Table 1 that the

optimal bandwidths are different for different expectile levels. Smaller bandwidths are preferred

for expectile levels around 0.5 while at extreme expectile levels (τ close to 0 and 1), slightly larger

bandwidths are favored. Also it is evident from Table 1 that AEREW compares quite favorably with

the five-fold cross-validation. Indeed, AEREW outperforms the cross-validation for all expectile

levels other than 0.5 and its performance there is very close to or even better than that of the best

candidate estimator. On the other hand, the cross-validation gives slightly better estimation for the

mean function (τ = 0.5) than AEREW, but still AEREW performs quite well in this case. From

the simulation result, it can be seen that when cross-validation is uncertain about the best estimator

(several estimators have reasonably large pCV values), AEREW can outperform the cross-validated
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estimator.

3.2 Multiple expectile regression: parametric or nonparametric?

We now demonstrate the application of AEREW in multiple expectile regression where more than

one covariate is available. For such models, the local linear etimator, such as (6), is not very useful

in practice when there are more than five covariates. In the current toolbox for multidimensional

expectile regression, we have the multiple linear expectile regression (Newey and Powell, 1987;

Efron, 1991) as well as the regression tree based nonparametric gradient boosting (Yang and Zou,

2015). The question one often encounters in practice is which one to use. In fact, it is well known

that the nonparametric regression is quite flexible to accommodate non-linearity but loses efficiency

when the linear parametric model is correctly specified. In the case of expectile regression, when

linear and nonlinear effects coexist in an underlying model, it is also possible that the expectile

function is nearly linear at certain expectile levels and becomes highly nonlinear at other levels.

Therefore, when multiple expectile levels need to be inspected together, it is beneficial to consider

adaptively aggregating both parametric and nonparametric methods for better estimation.

As an illustration, let us consider the following heteroscedastic model with multiple covariates

Y = XT
β +2ε exp(−0.35X2−1.1X4), (9)

where β = (1.5,2.5,1.0,0.5,2.0,1.5)T, X = (X1, . . . ,X6)
T ∼ N(0,I6), ε ∼ N(0,1) and X is indepen-

dent of ε. The true expectile function in this model is XTβ + 2bτ exp(−0.35X2− 1.1X4), where

bτ is the τth expectile of N(0,1). Intuitively, for some expectile levels (such as τ near 0.5), the

performance of parametric estimators may dominate that of nonparametric estimators, while the

opposite is true at the other expectile levels (such as larger or small τ values).

For the simulation study, we considered three candidate estimators. The multiple linear expectile

regression and nonparametric multiple expectile regression via gradient boosting arise as the two
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natural candidates. For illustration purpose, we also considered a slightly more complicated version

of the linear expectile regression by including an additional interaction term between X2 and X4

besides all the main effects X1, . . . ,X6. We included such a linear interaction model because it is

also a practically popular model in applications. The simulations were repeated M = 100 times. For

each simulation, we first generated a training set of N = 500 observations and applied the three

aforementioned candidate estimators, plus a five-fold cross-validation to select the best procedure,

as well as an aggregation of the candidate estimators using AEREW (Algorithm 2) to obtain the

estimates. In AEREW, the weights were averaged over B = 200 splits with split size N0 = 400.

Equal prior weights were assigned for the three candidate estimators for each split. We set λ = 1.

The estimated prediction risks and MSDs, defined in (8), were reported in Table 2 for independent

test sets of N1 = 10000 observations from model (9). In addition, we also included the proportion

pCV of each candidate estimator being selected by the cross-validation among the 100 independent

simulations.

Table 2 about here.

It can be seen from Table 2 that none of the three candidate estimator is universally better than

the others for all expectile levels. Indeed, when τ is in the middle of its range (around 0.5), the linear

expectile regression with only main effects compares favorably with the other two procedures. This

is expected since the true expectile function is mainly linear. For extreme expectile levels (τ away

from 0.5), the linear expectile regression with interaction and the gradient boosting outperform the

linear expectile regression with main effects only. From the patterns of pCV, it can be seen that for

expectile levels that are close to 0, 1, or 0.5, there is a clear dominating candidate estimator which

is selected by cross-validation with high probability. While for moderate expectile levels, there are

usually two competing candidate estimators (see e.g. τ = 0.25 and 0.75). AEREW outperforms the

three candidate estimators as well as the cross-validated estimator at all expectile levels. Moreover,

we observe a greater gain by using AEREW for moderate expectile levels when cross-validation
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experiences difficulty in selecting a clear winner.

4 Personal Computer Data

We apply AEREW to a data set described in Stengos and Zacharias (2006). The data set contains

monthly price information of personal computers from January 1993 to November 1995 and was

analyzed using a hedonic analysis. There are n = 6259 observations with 10 variables. The

response variable is Price, and the hedonic variables Speed, HD, RAM, Screen, CD, Multi, and

Premium directly describe the major hedonic characteristics that make up a computer. The other two

explanatory variables ADs and Trend are not directly related to the personal computer characteristics,

but are believed to be associated with the price. For example, it might be interesting to see if

aggressive advertising is associated with lower price, or if an intertemporal effect exists among

the hedonic components of personal computers. After inspecting the data, we decided to take the

logarithmic transformation on all continuous variables except Trend. We considered a hedonic

analysis at different price levels using expectile regression. Three candidate models were considered:

the multiple linear expectile regression with main effects only, the linear expectile regression with

main effects and two-way interactions, and the nonparametric approach via boosting. We applied a

five-fold cross-validation to select the best procedure among the three candidates. Finally, we used

AEREW to aggregate the three candidate models.

For the analysis, we randomly sampled N = 3129 observations from the data to form a training

set, on which the three aforementioned candidate estimators were fitted and a five-fold cross-

validation was applied to select the best procedure. To aggregate the candidate estimators through

AEREW (Algorithm 2), we averaged the weights over B = 200 splits with split size N0 = 2503.

Equal prior weights were assigned and we set λ = 1. The prediction risks of the procedures, as

defined in (8), were evaluated on the remaining N1 = 3130 observations. This procedure was

repeated M = 100 times and the results are summarized in Table 3 and Figure 1. The proportions of
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the candidate estimators being selected by the five-fold cross-validation are reported in pCV.

Table 3 about here.

Figure 1 about here.

It can be seen from both Table 3 and Figure 1 that at all expectile levels, the linear expectile

regression with interactions outperforms the linear expectile regression with main effects only. The

boosting estimator performs better for middle range of the expectile levels, while the linear expectile

regression with interactions is better for extreme expectile levels. At 0.10 level, boosting and the

linear model with interactions are very comparable to each other. This can be seen from the values

of pCV. However, it is also very clear that if we consider multiple expectile levels, there is no clear

winner among the candidate estimators. It is interesting to see that AEREW gives smaller prediction

errors than all candidates and the cross-validated estimator at all expectile levels in Table 3.
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Appendix: Proofs

We present here the proofs of all theoretical results in previous sections along with a few technical

lemmas. The first lemma concerns the smoothness of the asymmetric squared error loss. For ease

of notation, let wτ(u) = |τ− I(u < 0)|. Observe that c≤ wτ(u)≤ c̄ for all u ∈ R.

Lemma 1. The asymmetric squared error loss Ψτ(u) has Lipschitz continuous derivative,

2c|u−u0| ≤ |Ψ′τ(u)−Ψ
′
τ(u0)| ≤ 2c̄|u−u0|, ∀u,u0 ∈ R. (10)

Moreover, Ψτ(u) satisfies

c(u−u0)
2 ≤Ψτ(u)−Ψτ(u0)−Ψ

′
τ(u0)(u−u0)≤ c̄(u−u0)

2, ∀u,u0 ∈ R. (11)

Proof. We first prove the inequalities in (10). Note that Ψ′τ(u) = 2wτ(u)u. If u = 0 or u0 = 0, then

the inequalities in (10) hold trivially. If uu0 > 0, we must have wτ(u) = wτ(u0). It follows that

2c|u−u0| ≤ |Ψ′τ(u)−Ψ
′
τ(u0)|= 2wτ(u)|u−u0| ≤ 2c̄|u−u0|.

If instead uu0 < 0, there are two cases: u > 0,u0 < 0 or u < 0,u0 > 0. For the first case, we have

2c|u−u0| ≤ |Ψ′τ(u)−Ψ
′
τ(u0)|= 2τu−2(1− τ)u0 ≤ 2c̄|u−u0|.

For the second case, we have

2c|u−u0| ≤ |Ψ′τ(u)−Ψ
′
τ(u0)|=−2(1− τ)u+2τu0 ≤ 2c̄|u−u0|.

This establishes the inequalities in (10).

Next we prove the inequalities in (11). Note that the second inequality in (11) follows from the

16



second inequality in (10) by Theorem 2.1.5 of Nesterov (2004). To prove the first inequality in (11),

note that

Ψτ(u)−Ψτ(u0)−Ψ
′
τ(u0)(u−u0)

=wτ(u)u2−wτ(u0)u2
0−2wτ(u0)u0(u−u0)

=wτ(u0)(u−u0)
2 +{wτ(u)−wτ(u0)}u2.

If wτ(u)≥ wτ(u0), then obviously we get

Ψτ(u)−Ψτ(u0)−Ψ
′
τ(u0)(u−u0)≥ wτ(u0)(u−u0)

2 ≥ c(u−u0)
2.

If wτ(u)< wτ(u0), then we have c = wτ(u), c̄ = wτ(u0) and u0u≤ 0. It follows that

Ψτ(u)−Ψτ(u0)−Ψ
′
τ(u0)(u−u0)

=cu2−2c̄u0(u−u0)− c̄u2
0

≥cu2−2cu0a+ cu2
0 = c(u−u0)

2.

Therefore, we have established the first inequality in (11). This completes the proof of Lemma 1.

The second lemma deals with sub-exponential random variables. See Vershynin (2010) for a

thorough treatment of sub-exponential random variables.

Lemma 2. Let ζ be a centered sub-exponential random variable, whose sub-exponential norm

satisfies K = ‖ζ‖SEXP = supk≥1 k−1(E|ζ |k)1/k ∈ (0,∞). Then,

(a). Eexp(t|ζ |)≤ 2exp(CK2t2), ∀|t| ≤ c/K, where C = 2e2,c = 1/(2e) and e = exp(1).

(b). Let ητ = Ψ′τ(ζ −E τ(ζ )) = 2(ζ −E τ(ζ ))|τ− I(ζ < E τ(ζ ))| for τ ∈ (0,1). Then ητ is also
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centered and satisfies

Eexp(t|ητ |)≤ 2exp(CK2
τ t2), ∀|t| ≤ c/Kτ ,

and

E{|ητ |2 exp(t|ητ |)} ≤ 16
√

2K2
τ exp(2C2K2

τ t2), ∀|t| ≤ c/(2Kτ),

where Kτ = ‖ητ‖SEXP = supk≥1 k−1(E|ητ |k)1/k is the sub-exponential norm of ητ satisfying

that Kτ ≤ 2c̄{K + |E τ(ζ )|}.

Proof. Let us first show result (a). It follows directly from Lemma 5.15 of Vershynin (2010) that

Eexp(tζ )≤ exp(CK2t2), ∀|t| ≤ c/K. Let F be the CDF of ζ . For |t0| ≤ c/K and t0 ≥ 0, we have

Eexp(t0ζ )≤ exp(CK2t2
0) and Eexp(−t0ζ )≤ exp(CK2t2

0). Then it follows that

∫
∞

0
exp(t0z)dF(z)≤ exp(CK2t2

0) and
∫ 0

−∞

exp(−t0z)dF(z)≤ exp(CK2t2
0).

Thus, we have

Eexp(t0|ζ |) =
∫

∞

0
exp(t0z)dF(z)+

∫ 0

−∞

exp(−t0z)dF(z)≤ 2exp(CK2t2
0).

Now for any t ∈ [−c/K,c/K], we have Eexp(t|ζ |)≤Eexp(|t| · |ζ |)≤ 2exp(CK2t2). This completes

the proof of result (a).

For result (b), first note that by definition of E τ(ζ ), we conclude that E(ητ) = 0. By Minkowski

inequality, we have Kτ ≤ 2c̄{K+ |E τ(ζ )|}< ∞. Thus, ητ is also a sub-exponential random variable.

The upper bound on the moment generating function of |ητ | follows naturally from result (a). For

E{|ητ |2 exp(t|ητ |)}, note that by Cauchy-Schwarz inequality we have

E{|ητ |2 exp(t|ητ |)} ≤ (E|ητ |4)1/2{Eexp(2t|ητ |)}1/2,
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for which (E|ητ |4)1/2 = {(E|ητ |4)1/4}2 ≤ (4Kτ)
2 and {Eexp(2t|ητ |)}1/2 ≤

√
2exp(2CK2

τ t2) for

any |t| ≤ c/(2Kτ). Result (b) then follows.

Proof of Theorem 1. We first prive the oracle inequality for AEREW by Algorithm 1. The same

proof works for AEREW by Algorithm 2 with a small modification which will be explained later.

Let qn
n0
= ∑

∞
j=1 π j exp

{
−λ ∑

n
i=n0+1 Ψτ(yi− êτ, j,n0(xi))

}
. Observe that

qn
n0
=

∞

∑
j=1

π j exp
{
−λΨτ(yn0+1− êτ, j,n0(xn0+1))

}
×

∑
∞
j=1 π j exp

{
−λ ∑

n0+2
i=n0+1 Ψτ(yi− êτ, j,n0(xi))

}
∑

∞
j=1 π j exp

{
−λΨτ(yn0+1− êτ, j,n0(xn0+1))

}
×·· ·×

∑
∞
j=1 π j exp

{
−λ ∑

n
i=n0+1 Ψτ(yi− êτ, j,n0(xi))

}
∑

∞
j=1 π j exp

{
−λ ∑

n−1
i=n0+1 Ψτ(yi− êτ, j,n0(xi))

}
=

n

∏
i=n0+1

(
∞

∑
j=1

Wj, i exp
{
−λΨτ(yi− êτ, j,n0(xi))

})
.

Fix i ∈ {n0 +1, . . . ,n}. Let J be the discrete random variable such that P(J = j) =Wj,i, j ≥ 1. Let

ν be the discrete measure induced by J on Z+ such that ν( j) = P(J = j) =Wj,i, j ≥ 1. For ease of

notation, denote h(J) =−Ψτ(yi− êτ,J,n0(xi)). It follows that

∞

∑
j=1

Wj,i exp{−λΨτ(yi− êτ, j,n0(xi))}= Eν exp{λh(J)}.

By Lemma 3.6.1 of Catoni and Picard (2004, p. 85), we have

logEν exp{λh(J)} ≤ λEν(h(J))+
λ 2

2
varν(h(J))exp

[
λ max

{
0, sup

γ∈[0,λ ]

M3
νγ
(h(J))

varνγ
(h(J))

}]
, (12)
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where the induced measure νγ ,γ ∈ [0,λ ] is given by

νγ( j) =
Wj, i exp(γh( j))

∑
∞

j′=1Wj′, i exp(γh( j′))
, j ≥ 1,

and M3
νγ
(h(J)) = Eνγ

{h(J)−Eνγ
h(J)}3 is the third central moment.

To facilitate the presentation, let bτ(x) = E τ(ε|x) be the conditional τ th expectile of the random

error ε given X = x. It can be seen that the expectile function eτ(x) = m(x) +σ(x)bτ(x). By

Lemma 1, it can be shown that

sup
γ∈[0,λ ]

M3
νγ
(h(J))

varνγ
(h(J))

≤ sup
γ∈[0,λ ]

sup
j≥1
|h( j)−Eνγ

(h(J))| ≤ sup
j1, j2≥1

|h( j1)−h( j2)|

≤ 2sup
j≥1
|Ψτ(yi− êτ, j,n0(xi))−Ψτ(yi− eτ(xi))|

≤ 2σ(xi)|Ψ′τ(εi−bτ(x))|sup
j≥1
|êτ, j,n0(xi)− eτ(xi)|+2c̄sup

j≥1
(êτ, j,n0(xi)− eτ(xi))

2

and that

varν(h(J))≤ Eν

{
Ψτ(yi− êτ,J,n0(xi))−Ψτ(yi−Eν êτ,J,n0(xi))

}2

≤ sup
j≥1

(
|Ψ′τ(yi− êτ, j,n0(xi))|+ c̄|êτ, j,n0(xi)−Eν êτ,J,n0(xi)|

)2Eν

(
êτ,J,n0(xi)−Eν êτ,J,n0(xi)

)2

≤
{

σ(xi)|Ψ′τ(εi−bτ(x))|+4c̄sup
j≥1
|êτ, j,n0(xi)− eτ(xi)|

}2
Eν

(
êτ,J,n0(xi)−Eν êτ,J,n0(xi)

)2
.

Also from Lemma 1, we get that

Ψτ(yi− êτ, j,n0(xi))−Ψτ(yi−Eν êτ,J,n0(xi))

≥Ψ
′
τ(yi−Eν êτ,J,n0(xi))(Eν êτ,J,n0(xi)− êτ, j,n0(xi))+ c(êτ, j,n0(xi)−Eν êτ,J,n0(xi))

2.
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Taking expectation with respect to J of both sides of the above inequality, we have

Eν(êτ,J,n0(xi)−Eν êτ,J,n0(xi))
2 ≤ c−1{EνΨτ(yi− êτ,J,n0(xi))−Ψτ(yi−Eν êτ,J,n0(xi))

}
.

Let ξi = Ψ′τ(εi−bτ(x)). It follows from inequality (12) and assumptions (C1-C3) that with proba-

bility one

logEν exp{λh(J)}

≤ λEν(h(J))+2−1
λ

2(C0|ξi|+4c̄Aτ)
2 exp

{
2λC0Aτ |ξi|+2λ c̄A2

τ

}
× c−1{EνΨτ(yi− êτ,J,n0(xi))−Ψτ(yi−Eν êτ,J,n0(xi))

}
≤−λEνΨτ(yi− êτ,J,n0(xi))+λ

2c−1 exp(2λ c̄A2
τ)
(
C2

0 |ξi|2 +16c̄2A2
τ

)
exp(2λC0Aτ |ξi|)

×
{
EνΨτ(yi− êτ,J,n0(xi))−Ψτ(yi−Eν êτ,J,n0(xi))

}
.

(13)

Take the expectation (denoted by Ei) of both sides of (13) with respect to Yi conditional on xi∪

(xk,yk)
i−1
k=1. By Lemma 2, when λ is chosen small enough such that 2λC0Aτ ≤ (4eKτ)

−1, with

probability one we have

Ei log(Eν exp{−λΨτ(Yi− êτ,J,n0(xi))})

≤−λEi
{
EνΨτ(Yi− êτ,J,n0(xi))

}
+λ

2c−1 exp(2λ c̄A2
τ)
{

C2
0M2(2λC0Aτ)+16c̄2AτM0(2λC0Aτ)

}
×Ei

[
EνΨτ(Yi− êτ,J,n0(xi))−Ψτ(Yi−Eν êτ,J,n0(xi))

]
.

Moreover, if λ also satisfies

λ
2c−1 exp(2λ c̄A2

τ)
{

C2
0M2(2λC0Aτ)+16c̄2AτM0(2λC0Aτ)

}
≤ λ ,
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with probability one we will have

Ei log(Eν exp{−λΨτ(Yi− êτ,J,n0(xi))})≤−λEiΨτ(Yi−Eν êτ,J,n0(xi)),

since by convexity of Ψτ(·) and Jensen’s inequality we have

Ψτ(Yi−Eν êτ,J,n0(xi))≤ EνΨτ(Yi− êτ,J,n0(xi)).

It follows that when λ is small enough such that condition (3) holds, we have

E log(1/qn
n0
) =−

n

∑
i=n0+1

E log
(

∞

∑
j=1

Wj,i exp
{
−λΨτ(Yi− êτ, j,n0(Xi))

})
=−

n

∑
i=n0+1

E
[
Ei log(Eν exp{−λΨτ(Yi− êτ,J,n0(Xi))})

]
≥λE

[ n

∑
i=n0+1

EiΨτ

(
Yi−

∞

∑
j=1

Wj,iêτ, j,n0(Xi)

)]
=λ

n

∑
i=n0+1

EΨτ

(
Y −

∞

∑
j=1

Wj, iêτ, j,n0(X)

)
.

The last equality is due to the independence of the observations, i.e., (X, Y ) is independent of

(Xi, Yi)
n
i=1. On the other hand, we have, for each j∗ ≥ 1,

E log(1/qn
n0
)≤ log(1/π j∗)+λ

n

∑
i=n0+1

EΨτ(Yi− êτ, j∗,n0(Xi))

= log(1/π j∗)+λ (n−n0)EΨτ(Y − êτ, j∗,n0(X)).

Therefore, for any j∗ ≥ 1, we have

1
n−n0

n

∑
i=n0+1

EΨτ

(
Y −

∞

∑
j=1

Wj,iêτ, j,n0(X)

)
≤

log(1/π j∗)

λ (n−n0)
+EΨτ(Y − êτ, j∗,n0(X)). (14)
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Note that by definition of êτ,·,n(x), we have

y− êτ,·,n(x) =
1

n−n0

n

∑
i=n0+1

(
y−

∞

∑
j=1

Wj,iêτ, j,n0(x)
)
.

It follows from (14) and convexity of Ψτ(·) that for each j∗ ≥ 1,

EΨτ(Y − êτ,·,n(X))≤ 1
n−n0

n

∑
i=n0+1

EΨτ

(
Y −

∞

∑
j=1

Wj,iêτ, j,n0(X)

)
≤

log(1/π j∗)

λ (n−n0)
+EΨτ(Y − êτ, j∗,n0(X)).

This completes the proof of inequality (4). To show (5), note that by Lemma 1

EΨτ(Y − êτ, j∗,n0(X))≤ EΨτ(Y − eτ(X))+ c̄E(eτ(X)− êτ, j∗,n0(X))2

EΨτ(Y − êτ,·,n(X))≥ EΨτ(Y − eτ(X))+ cE(eτ(X)− êτ,·,n(X))2

due to the fact that E{Ψτ(Y − eτ(X))|X}= 0. Inequality (5) then follows from (4).

To prove the same result for AEREW by Algorithm 2, we use the convexity of Ψτ(·) and have

Ψτ

(
y− êB

τ,·,n(x)
)
≤ 1

B

B

∑
k=1

1
n−n0

n

∑
i=n0+1

Ψτ

(
y−

∞

∑
j=1

W (k)
j,i ê(k)

τ, j,n0
(x)
)
.

The result then follows from the previous proof for AEREW by Algorithm 1.
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Tables and Figures

Algorithm 1: The aggregated expectile regression by exponential weighting (AEREW) –
Single split.

1. Randomly split the data into two parts. Without loss of generality, denote the two parts by
D(0) = (xi,yi)

n0
i=1 and D(1) = (xi,yi)

n
i=n0+1 respectively, where D(0) is used for training

and D(1) is used for evaluation.

2. For each procedure δ j, obtain the estimate êτ, j,n0(xi) of eτ(xi) for every xi ∈ D(1)

based on the training data D(0), n0 +1≤ i≤ n, j ≥ 1.

3. Set Wj,n0+1 = π j such that π j ≥ 0, j ≥ 1, and ∑
∞
j=1 π j = 1, and calculate the weights

Wj,i =
π j exp

{
−λ ∑

i−1
k=n0+1 Ψτ(yk− êτ, j,n0(xk))

}
∑

∞

j′=1 π j′ exp
{
−λ ∑

i−1
k=n0+1 Ψτ(yk− êτ, j′,n0(xk))

} , j ≥ 1,n0 +2≤ i≤ n.

Obtain the aggregating procedure δa which estimates eτ(x) by

êτ,·,n(x) =
∞

∑
j=1

( n

∑
i=n0+1

Wj,i

n−n0

)
êτ, j,n0(x).
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Algorithm 2: The aggregated expectile regression by exponential weighting (AEREW) –
Multiple splits.

1. Randomly split the data into two parts. Without loss of generality, denote the two parts
by D(0) = (xi,yi)

n0
i=1 and D(1) = (xi,yi)

n
i=n0+1 respectively, where D(0) is used

for training and D(1) is used for evaluation.

2. For each procedure δ j, obtain the estimate êτ, j,n0(xi) of eτ(xi) for every xi ∈ D(1)

using the training data D(0) for fitting, n0 +1≤ i≤ n, j ≥ 1.

3. Set Wj,n0+1 = π j such that π j ≥ 0, j ≥ 1, and ∑
∞
j=1 π j = 1, and calculate the weights

Wj,i =
π j exp

{
−λ ∑

i−1
k=n0+1 Ψτ(yk− êτ, j,n0(xk))

}
∑

∞

j′=1 π j′ exp
{
−λ ∑

i−1
k=n0+1 Ψτ(yk− êτ, j′,n0(xk))

} , j ≥ 1, n0 +2≤ i≤ n.

4. Repeat the above three steps (B−1) times. Denote the estimates and weights from
the kth random split by ê(k)

τ, j,n0
(x) and W (k)

j,i , n0 ≤ i≤ n, j ≥ 1, 1≤ k ≤ B,
respectively. Obtain the aggregating procedure δ B

a which estimates eτ(x) by

êB
τ,·,n(x) =

∞

∑
j=1

n

∑
i=n0+1

B

∑
k=1

W (k)
j,i

B(n−n0)
ê(k)

τ, j,n0
(x).
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Table 1: Estimated prediction risks and MADs of local linear regressions with five candidate bandwidths, the five-fold
cross-validated kernel estimator, and AEREW (λ = 1) for the heteroscedastic model (7). The numbers listed are

averages over 100 independent runs with their respective standard errors reported in the parentheses. The proportion of
each candidate estimator being selected by the five-fold cross-validation among these 100 runs is reported by pCV. All

numbers are of order 10−2 except those corresponding to pCV

Bandwidth (h) Cross-validation AEREW
τ Measure 0.0347 0.104 0.173 0.243 0.312

0.05

risk 3.71 2.98 2.90 2.90 2.92 2.93 2.89
(0.03) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

MSD 25.16 16.56 15.11 15.72 16.48 16.03 14.67
(0.31) (0.39) (0.36) (0.30) (0.25) (0.33) (0.32)

pCV 0.00 0.23 0.23 0.12 0.42 – –

0.10

risk 4.98 4.13 4.06 4.12 4.20 4.17 4.07
(0.06) (0.03) (0.02) (0.02) (0.02) (0.03) (0.02)

MSD 22.30 13.93 13.05 14.42 15.83 14.49 13.04
(0.39) (0.37) (0.31) (0.24) (0.20) (0.40) (0.29)

pCV 0.03 0.34 0.28 0.14 0.21 – –

0.25

risk 6.69 5.82 5.85 6.05 6.26 5.88 5.86
(0.06) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

MSD 17.60 10.22 10.71 13.10 15.25 10.99 10.84
(0.39) (0.22) (0.20) (0.18) (0.16) (0.29) (0.21)

pCV 0.00 0.41 0.46 0.03 0.10 – –

0.50

risk 7.63 6.72 6.78 7.04 7.37 6.78 6.81
(0.06) (0.03) (0.03) (0.03) (0.03) (0.04) (0.03)

MSD 16.05 8.96 9.58 12.10 14.55 9.54 9.92
(0.32) (0.23) (0.21) (0.17) (0.15) (0.25) (0.22)

pCV 0.00 0.54 0.42 0.03 0.01 – –

0.75

risk 6.76 5.88 5.92 6.13 6.41 5.96 5.94
(0.10) (0.03) (0.03) (0.03) (0.04) (0.04) (0.03)

MSD 17.62 10.23 10.61 12.77 15.04 10.90 10.81
(0.51) (0.25) (0.23) (0.19) (0.16) (0.29) (0.23)

pCV 0.01 0.43 0.42 0.12 0.02 – –

0.90

risk 4.98 4.17 4.09 4.16 4.31 4.15 4.10
(0.06) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

MSD 22.51 14.47 13.08 14.26 16.18 14.02 13.26
(0.35) (0.36) (0.32) (0.26) (0.20) (0.32) (0.31)

pCV 0.02 0.26 0.42 0.20 0.10 – –

0.95

risk 3.87 3.08 2.97 3.00 3.08 3.04 2.99
(0.04) (0.03) (0.03) (0.03) (0.03) (0.03) (0.03)

MSD 26.78 18.41 16.18 16.62 18.20 17.37 16.16
(0.34) (0.45) (0.46) (0.43) (0.38) (0.45) (0.42)

pCV 0.00 0.29 0.30 0.25 0.16 – –29



Table 2: Estimated prediction risks, MSDs and their respective standard errors (in parentheses) of the linear expectile
regression with only main effects, linear expectile regression with interaction, nonparametric expectile regression via
boosting, the five-fold cross-validation and AEREW (λ = 1) for the heteroscedastic model (9) over 100 independent

runs. The proportion of each candidate estimator being selected by the cross-validation is summarized by pCV

Individual Cross-validation Aggregation
τ Measure Linear Interaction Boosting

0.05

Risk 53.58 49.07 53.39 49.56 47.71
(4.20) (4.03) (4.03) (4.06) (3.97)

MSD 12.08 10.88 11.74 10.95 10.39
(0.39) (0.39) (0.30) (0.39) (0.30)

pCV 0.06 0.87 0.07 – –

0.10

Risk 57.71 55.33 60.13 54.91 53.92
(2.86) (2.84) (2.82) (2.76) (2.74)

MSD 8.41 7.74 9.13 7.78 7.59
(0.21) (0.25) (0.20) (0.21) (0.18)

pCV 0.17 0.71 0.12 – –

0.25

Risk 64.87 66.14 69.06 65.86 62.99
(2.40) (3.21) (2.18) (3.20) (2.14)

MSD 4.49 4.44 5.77 4.45 4.14
(0.16) (0.24) (0.15) (0.24) (0.13)

pCV 0.48 0.47 0.05 – –

0.50

Risk 71.20 72.37 76.07 71.84 71.52
(2.41) (2.45) (2.45) (2.44) (2.41)

MSD 1.51 2.01 3.39 1.75 1.67
(0.07) (0.11) (0.10) (0.10) (0.08)

pCV 0.71 0.21 0.08 – –

0.75

Risk 67.78 67.34 70.07 67.62 66.62
(3.23) (3.18) (3.23) (3.19) (3.20)

MSD 4.34 4.18 5.06 4.29 4.07
(0.11) (0.13) (0.11) (0.12) (0.11)

pCV 0.47 0.43 0.10 – –

0.90

Risk 54.98 53.48 53.86 51.44 50.56
(3.26) (3.50) (3.09) (3.03) (3.05)

MSD 8.40 7.78 8.41 7.64 7.46
(0.26) (0.31) (0.17) (0.17) (0.17)

pCV 0.20 0.66 0.14 – –

0.95

Risk 46.76 43.32 45.91 43.83 42.22
(2.93) (2.84) (2.97) (2.95) (2.92)

MSD 11.50 10.40 10.88 10.46 10.00
(0.25) (0.24) (0.22) (0.23) (0.20)

pCV 0.12 0.70 0.18 – –
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Table 3: Estimated prediction risks of the linear expectile regression with main effects only, the augmented linear
expectile regression with interactions, the nonparametric expectile regression via boosting, the five-fold cross-validation,
and AEREW (λ = 1) for the personal computer data. The measures are averaged over 100 random splits of the data and
their corresponding standard errors are included in the parentheses. Proportions the candidate estimators being selected

by the cross-validation are given by pCV. All numbers are of order 10−3 except those corresponding to pCV

Individual Cross-validation Aggregation
τ Measure Linear Interaction Boosting

0.05
risk 2.074 1.905 2.066 1.905 1.787

(0.005) (0.005) (0.009) (0.005) (0.005)

pCV 0.00 1.00 0.00 – –

0.10
risk 3.327 3.069 3.046 3.065 2.778

(0.007) (0.006) (0.012) (0.009) (0.007)

pCV 0.00 0.53 0.47 – –

0.25
risk 5.634 5.166 4.733 4.733 4.519

(0.010) (0.009) (0.015) (0.015) (0.011)

pCV 0.00 0.00 1.00 – –

0.50
risk 6.973 6.294 5.558 5.558 5.427

(0.011) (0.010) (0.017) (0.017) (0.011)

pCV 0.00 0.00 1.00 – –

0.75
risk 5.946 5.236 4.721 4.721 4.581

(0.012) (0.010) (0.018) (0.018) (0.012)

pCV 0.00 0.00 1.00 – –

0.90
risk 3.728 3.203 3.066 3.086 2.896

(0.009) (0.007) (0.012) (0.013) (0.009)

pCV 0.00 0.13 0.87 – –

0.95
risk 2.436 2.070 2.126 2.071 1.916

(0.005) (0.005) (0.010) (0.006) (0.006)

pCV 0.00 0.91 0.09 – –
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Figure 1: Estimated prediction risks of the linear expectile regression with only main effects, the augmented linear
expectile regression with interactions, the nonparametric expectile regression via gradient boosting, the five-fold

cross-validation, and AEREW based on 100 independent runs for the personal computer data. On the x-axis of each
boxplot, “L” represents the linear expectile regression with only main effects, “I” denotes the augmented linear

expectile regression with interactions, and “B” stands for the nonparametric expectile regression via gradient boosting.
Each boxplot summarizes the results for one expectile level τ ∈ {0.05,0.10,0.25,0.50,0.75,0.90,0.95}.
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